NATIONAL ROADS AND **GREENWAYS CONFERENCE 2024**

Session 5: Protection & Renewal Chair: Stephen Smyth, Senior Manager, Pavement Asset Management Programmes, TII

Programme: Session 5

Session 5: Protection & Renewal

Chair: Stephen Smyth, Senior Manager, Pavement Asset Management Programmes, TII

9.00am	Sustainable Pavement Design and Construction: A case study	Dimitr Kilsara
9.15am	Update on the new Road Safety Audit standard	Martin
9.30am	An introduction to Ireland's Supply Chain Sustainability School	Pame Mana Susta
9.45am	Speed Limit Review (2023) and implementation	John I Roads
10.00am	Strategic Asset Management Plan (SAMP) for National Roads.	Dr Kie Gerar
10.15am	Collaboration between ESB and Road Authorities	Corma Mana
10.30am	Q&A	·
10.40am	Tea & Coffee	
11.10am	End of Session 5	

tris Michailidis, CEng, ran

n Deegan, CEng, TRAFFICO

ela Sheridan, Operations ager, Supply Chain ainability School

McCarthy, Senior Advisor, ls, Department of Transport

eran Feighan, PMS Ltd and rd O'Dea, TII

ac Collins, Delivery ager, ESB Networks

Sustainable Pavement Design and Construction: A case study

Dimitris Michailidis, CEng, Kilsaran

An Roinn Iompair Department of Transport

Sustainable Pavement Design and Construction – A Case Study

Dimitris Michailidis (CEng MIEI) Kilsaran Technical Manager – Road Surfacing & Operational Improvement

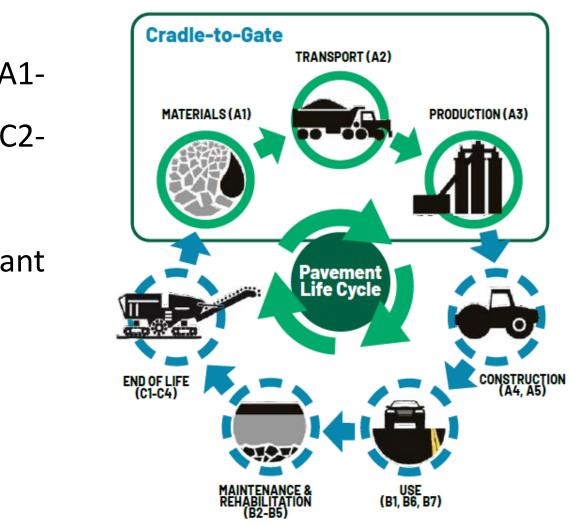
Towards Net Zero **Sustainable Pavement Design**

Targets

- ✓ The transport sector has been identified as one of the most Greenhouse Gas (GHG) emissions producing sectors and the European asphalt industry has the potential to become a key tool in the decarbonisation process of Europe and is already active in various fields to target a climate-neutral future.
- ✓ With the ambitious goal of achieving net zero GHG emissions by 2050, one objective is to identify the technologies and practices that can be readily adopted or expanded to reduce GHG emissions associated with asphalt pavements.

European Asphalt Pavement Association

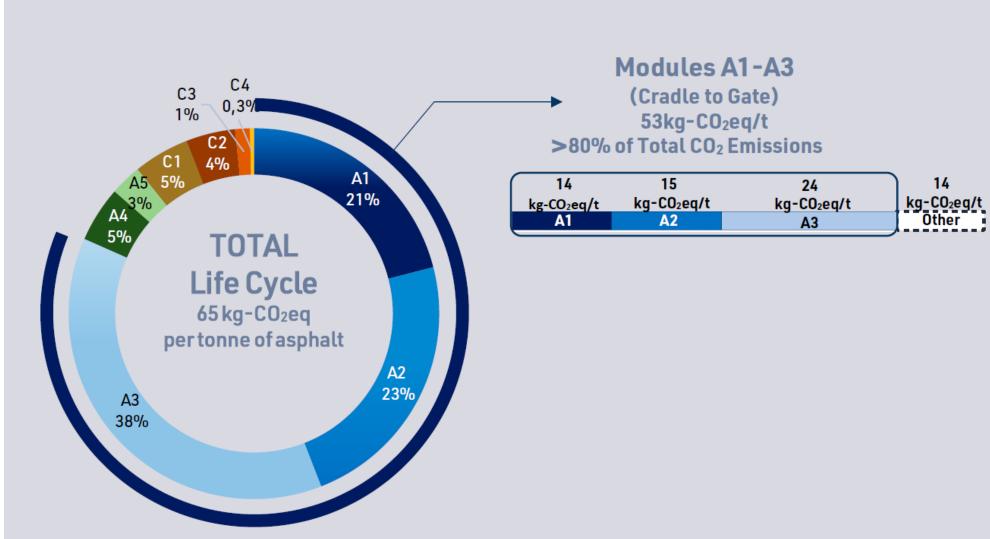
The asphalt paving industry accounts for **14 Mt of CO**₂eq per year, around 0,35% of total emissions in the EU.



Towards Net Zero Sustainable Pavement Design

> With the ratification of the Paris climate agreement to avoid the uncompensated effects of climate change, 197 countries will have to dramatically reduce their greenhouse gas emissions in half by 2030. For this reason, the reduction of the environmental impacts of road construction is becoming an urgent necessity.

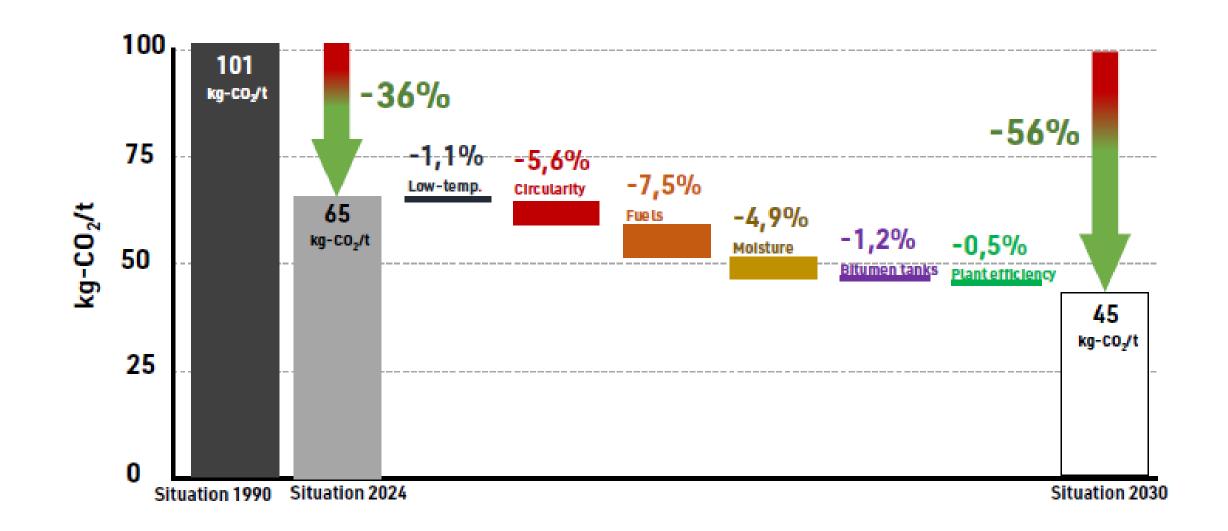
- ✓ GHG emissions occur during each stage of the pavement life cycle: production (A1-A3), construction (A4-A5), maintenance (B2-B5), use (B1, B6), and end of life (C2-C4).
- \checkmark The production stage (cradle-to-gate) tends to have the most significant contribution to a pavement's embodied carbon emissions.


Carbon Neutral Pavements

Towards Net Zero Sustainable Pavement Design

Targets

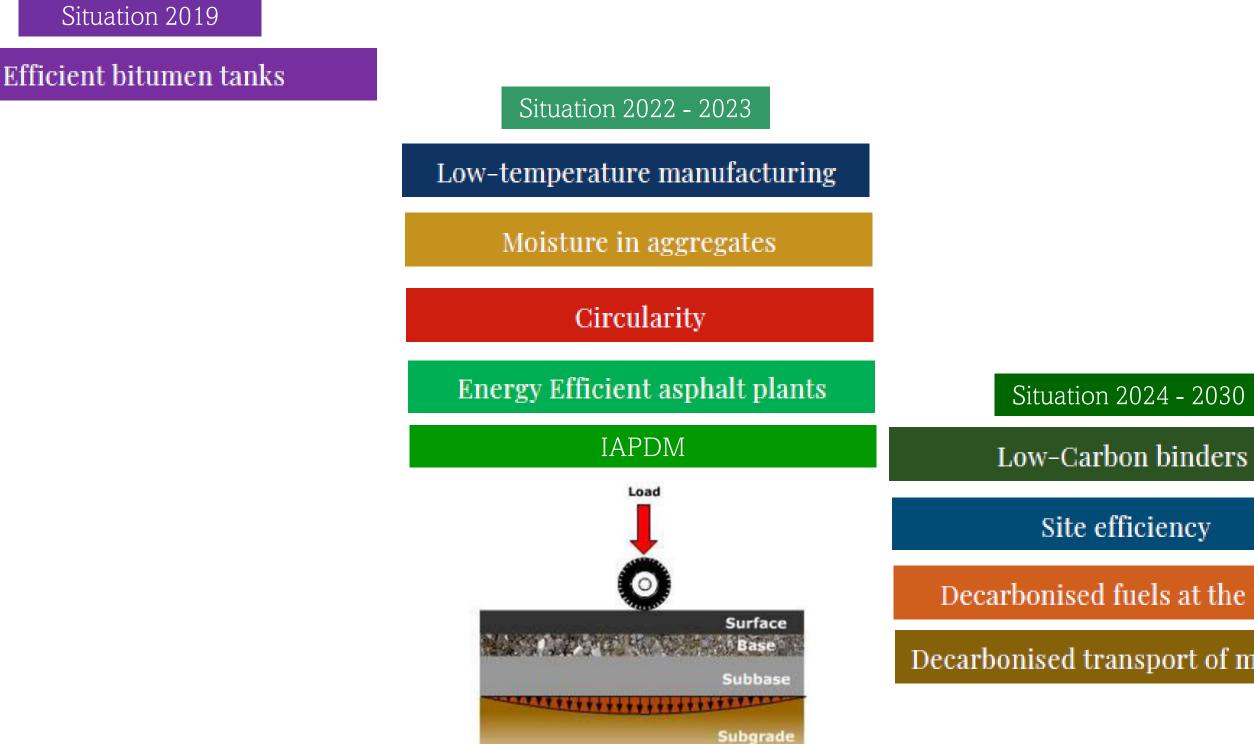
Calculations showed that the production of 1 ton of a reference asphalt results in the emission of 65 kg of CO₂eq during its whole life cycle, 53 kg of CO₂eq if emissions are already emitted before the product leaves the production plant (cradletogate).



A holistic strategy by the European Asphalt Pavement

Association

Achieving the decarbonization objectives requires the implementation of


a holistic strategy, with the main 2 milestones in 2030 and 2050.

Impact reduction potential of different technologies in Ireland

Situation 2024 - 2030

Site efficiency

Decarbonised fuels at the plant

Decarbonised transport of materials

Situation 2050

Other

Impact reduction potential of different technologies

Electrification of Bitumen Tanks

Environmentally Friendly: Electric heating is generally considered an environmentally friendly option compared to

other heating methods. By eliminating fuel usage, it reduces emissions and minimizes environmental impact.

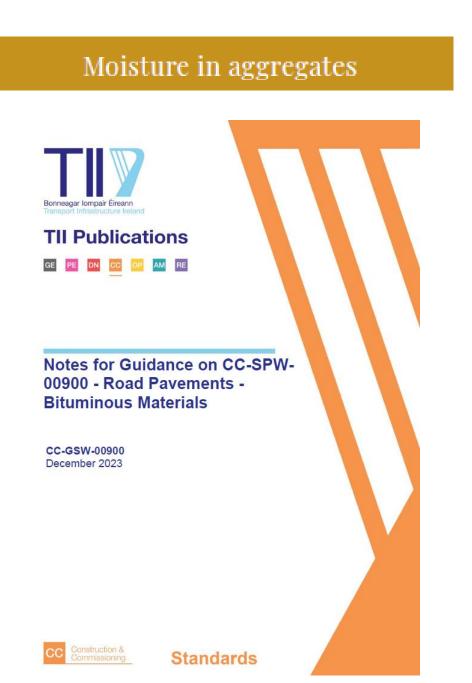
 \checkmark By 2030 only electric and gas heating will be used (no diesel), while for 2050, it is considered that only electric heating will be used.

Source: A Decarbonization Roadmap for the Asphalt Industry, June 2024

Impact reduction potential of different technologies

Low-temperature manufacturing

- Introduction of WMA in Series 900 October 2023. \succ
- > WMA are produced at lower temperatures, typically 20-40°C lower, compared to equivalent Hot Mix Asphalts (HMA) but always above 100°C. WMA can either be produced using chemical additives or organic additives.


Pollutant	Emission factor (kg CO ₂ equivalent)	Hot mix emission rates (kg CO2 equiv. / hr)	Warm mix emission rates (kg CO2 equiv. / hr)
Carbon monoxide	1.57	5.2	12.0
Oxides of nitrogen	1	2.9	2.8
Sulphur dioxide	0.44	0.04	0.1
Volatile organic compounds	1	0.2	0.2
Total Organic Carbon	1	2.2	3.0
Carbon dioxide	1.0	2,574.2	2,321.7
Totals (kg CO2 equiv. / hr)		2,584.7	2,339.8
Net improvement (%)		9.48	

- > Protecting aggregate and RA stockpiles from rain can help to reduce moisture content and, consequently, the energy needed to dry such materials.
- \succ Scientific literature shows that every 1% reduction in moisture content leads to a reduction in drying energy consumption of around 8 kWh.

-4,9% Emissions by 2050

Situation 2022 - 2023

Circularity

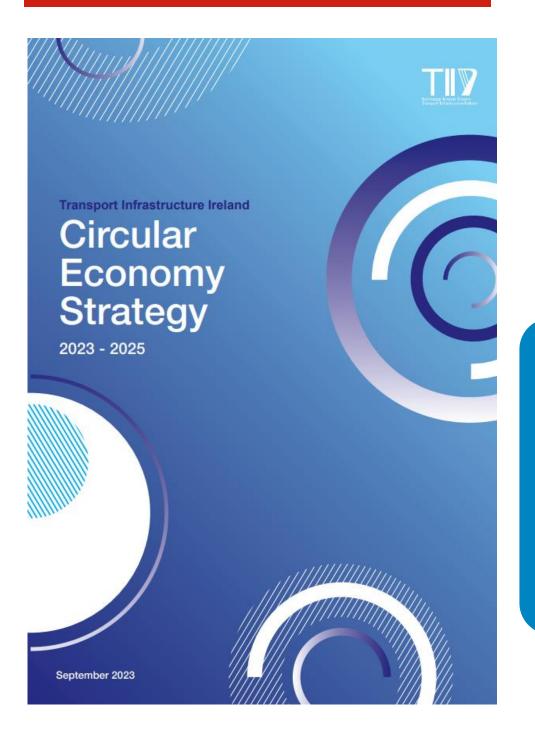
TII Publications GE PE DN CC OP AM RE

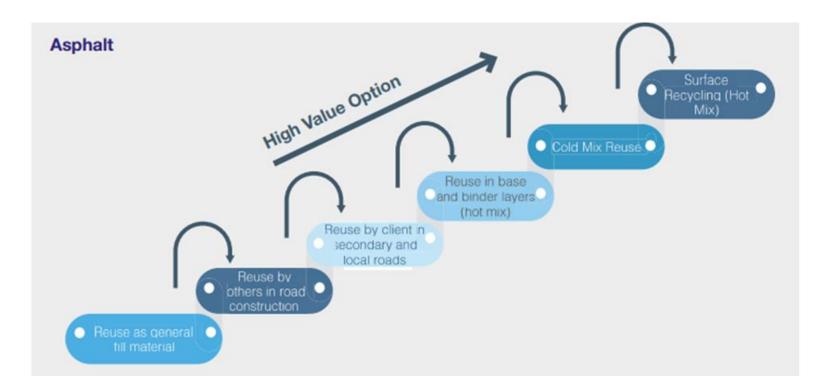
Road Pavements – Bituminous Materials

CC-SPW-00900 October 2023

Significant increase in allowable RA percentage introduced in Series 900 – October 2023.

Reusing asphalt involves incorporating reclaimed asphalt from existing pavements into new mixtures, thus reducing the demand for virgin materials. This practice conserves natural resources, decreases emissions from transportation of raw materials, and cuts down emissions related to waste disposal.


-12,3% Emissions by 2050



Impact reduction potential of different technologies

Circularity

Life Cycle assessment (LCA) is a method to quantify & improve environmental impacts of products, processes or systems.

The use of LCA can promote environmental sustainability of products.

- The contribution of the addition of RAP in the bituminous mixtures towards the reduction of emissions is significant.
- The most significant environmental impact is observed during material production.

Impact reduction potential of different technologies

Situation 2022 - 2023

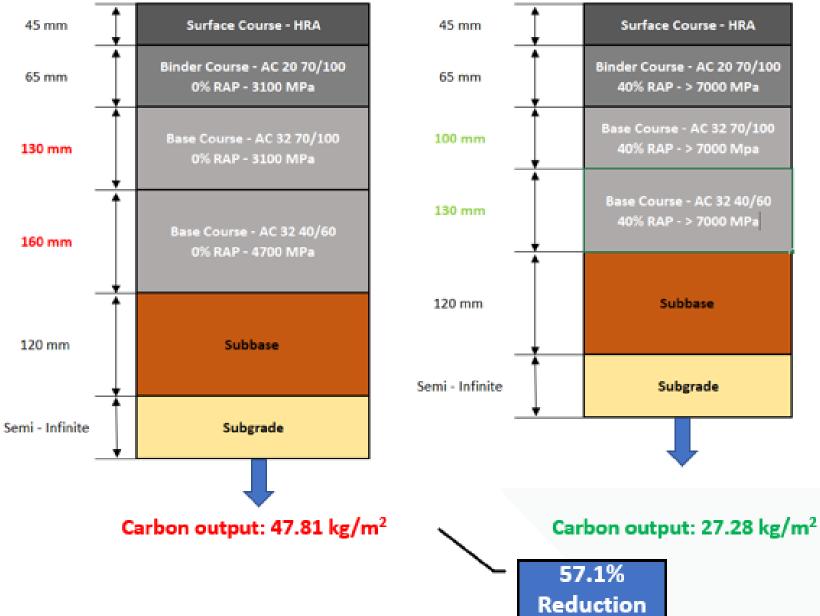
Energy Efficient asphalt plants

starts and stops.

Innovative burners which use fuels made from renewable raw materials and have a neutral CO₂ balance. They include biomass to liquid fuels (BtL) and wood dust.

-1.1% Emissions by 2050

 \checkmark Carbon emissions from asphalt plants can be reduced by implementing energy-efficient technologies, such as advanced burner systems, heat recovery, emission control technologies, automated control systems and mix storage systems to minimize inefficient plant


Impact reduction potential of different technologies

Situation 2022 - 2023

IAPDM

Although empirical procedures have performed reasonably, they are limited in their ability to benefit from the vast number of emerging new products, construction practices, and design innovations that optimize performance of the pavement system and minimize traffic interruptions and costly maintenance and rehabilitation activities.

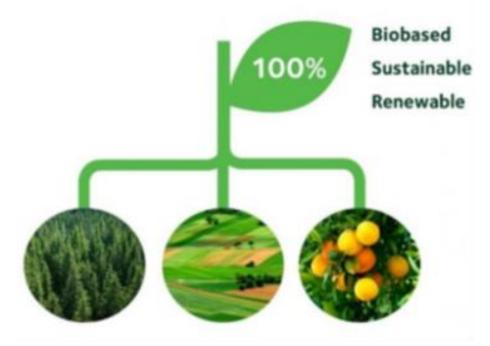
The introduction of the Irish analytical pavement design has the potential to predict performance for different pavement design alternatives.

Development of a Sustainable Pavement Design

Carbon Neutral Pavements

Towards Net Zero

Impact reduction potential of different technologies



Low-Carbon binders

> Replacing oil-based bitumen with alternative binders minimizes the environmental impact of extracting, transporting and refining crude oil for bitumen production.

> **Reduced Environmental Impact:** The production process of bio binders generally emits fewer greenhouse gases compared to the production of conventional asphalt.

Performance and Durability: They offer good resistance to weathering, aging, and mechanical stresses. Bio binders can even enhance the lifespan of asphalt pavements by improving resistance to cracking and rutting

Impact reduction potential of different technologies

Situation 2024 - 2030

Decarbonised fuels at the plant

-14,1% Emissions by 2050

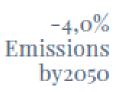
Fuel substitution by hydrogen: Hydrogen can be gradually introduced into the fuel mix without changing the standard equipment configuration (up to 30% vol. of hydrogen in the blend). However, equipment adaptations would be necessary for higher concentrations of hydrogen or full substitution.

In 2030, only gas (LNG), bio-fuels and electricity (either applied directly or in the production of fuels like hydrogen) will be used, eliminating other fuels like coal and diesel. In the 2050 scenario, gas is eliminated as well, remaining only green energy sources.

Impact reduction potential of different technologies

Situation 2024 - 2030

Decarbonised transport of materials



Adoption of electric or hybrid vehicles, utilizing alternative fuels like biofuels or hydrogen, and optimizing logistics to reduce empty miles and improve route planning.

Site efficiency

Sustainability through digitization

- Smart construction vehicles equipped with digital systems can optimize their routes and workflows, thus reducing fuel consumption and carbon emissions.

Carbon emissions from machinery at the jobsite can be reduced by:

- Improving fuel efficiency,
- Minimize idle time and energy consumption,
- Adopt innovations in materials handling processes (conveyor systems)

Impact reduction potential of different technologies

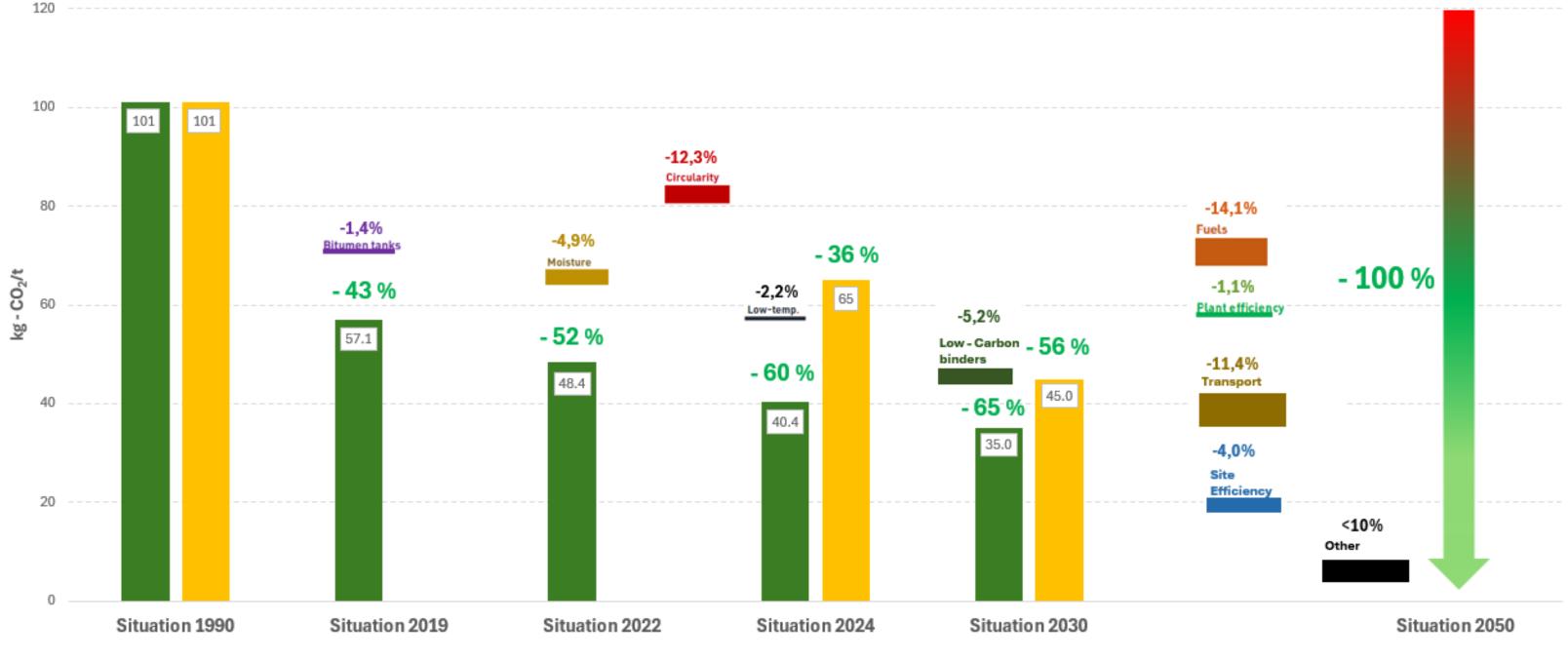
Situation 2050

Other

After applying the previous strategies, less than 10% of CO2eq emissions remain.

The importance of enhanced material durability to reduce the number of maintenance interventions and minimize whole-life carbon emissions.

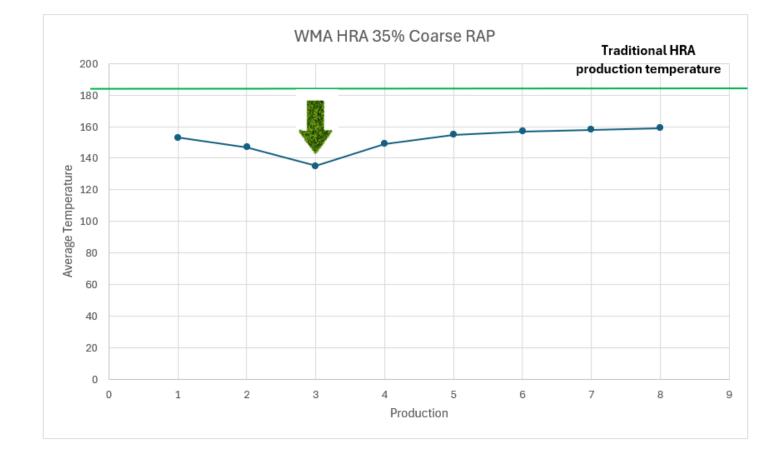
- ✤ The majority of surface course asphalts have a much higher proportion of carbon embodied in scope 3 approximately double that of a typical base course – due to the raw materials used. This is because surface courses have higher bitumen contents, a greater use of polymer modified bitumen (PMB) and often contain high polished stone value (PSV) aggregates, which have generally travelled further to reach the asphalt plant.
- PMBs improve flexibility, strength and resistance to fatigue and deformation to extend the life of the asphalt. **
- PMB has higher embodied carbon than standard bitumen but offers benefits such as enhanced durability through ** increased fatigue resistance, which extends the life of the asphalt and reduces whole-life emissions. Biogenic material, and other additives can also be included that can help further reduce embodied CO2.

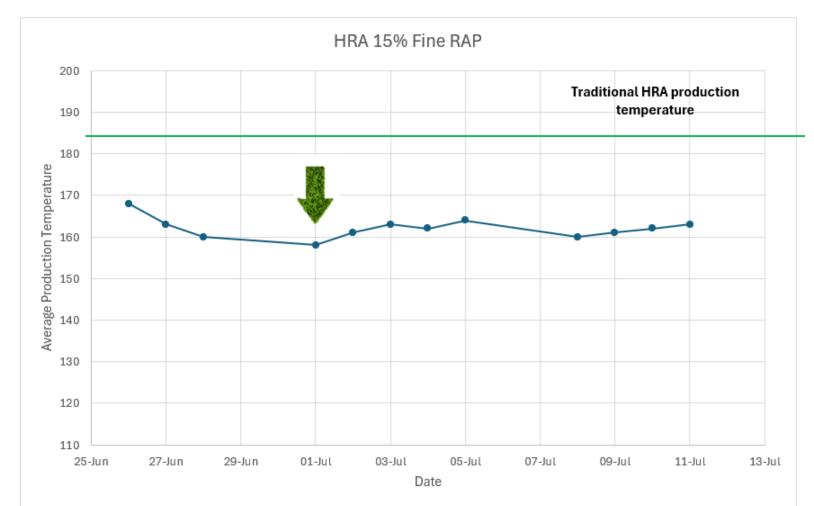


Carbon Neutral Pavements

Towards Net Zero

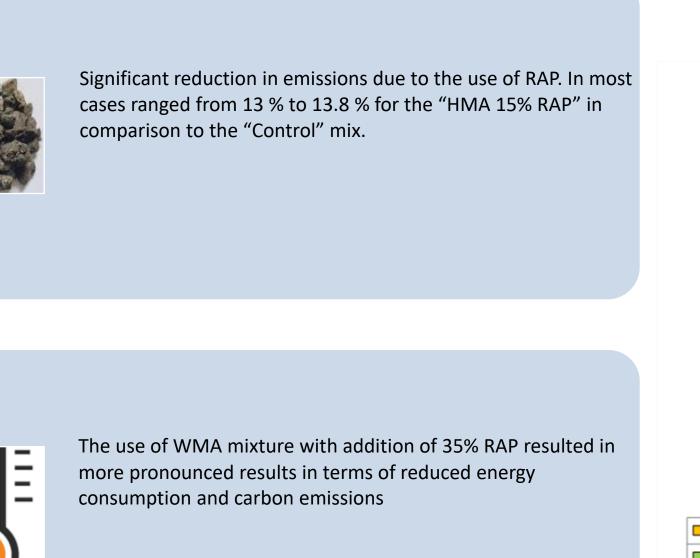
Kilsaran - Towards Net Zero, A1 - A3, GWP CO₂ eq/t




Case Study – M7 Kildare Bypass Pavement Scheme

Sustainable Materials HRA 35% RAP HRA 15% RAP

PRODUCTION



Carbon Neutral Pavements

Towards Net Zero

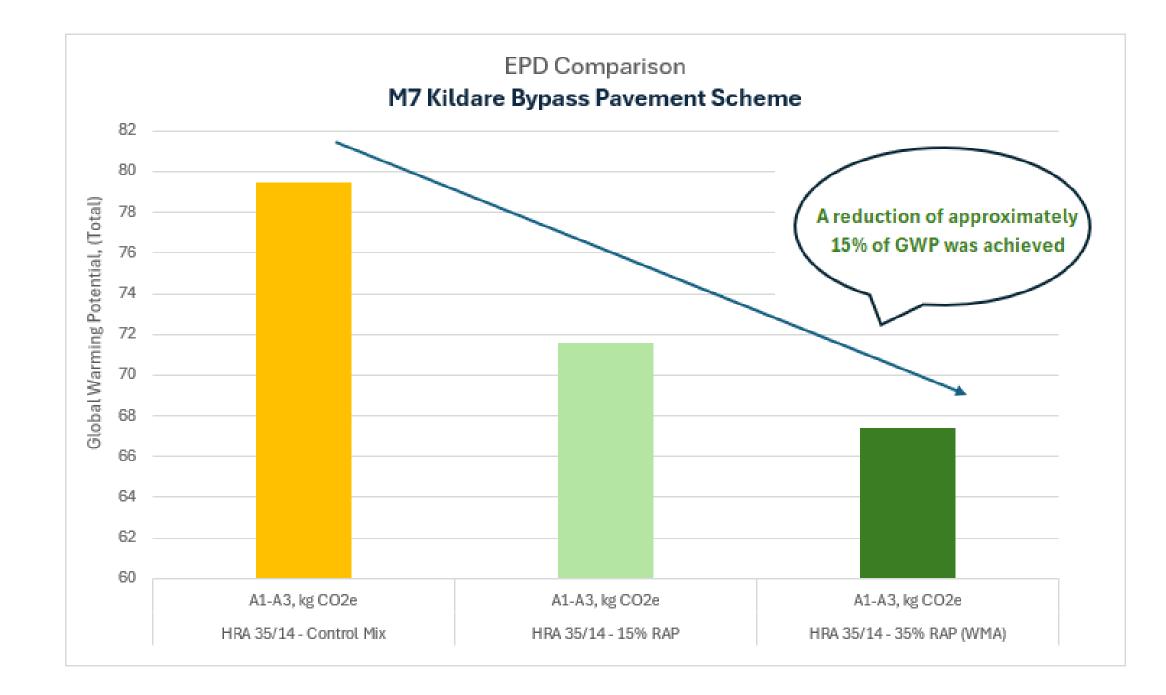
Impact reduction potential of different technologies

Case Study – M7 Kildare Bypass Pavement Scheme EPD Comparison

What are EPD's?

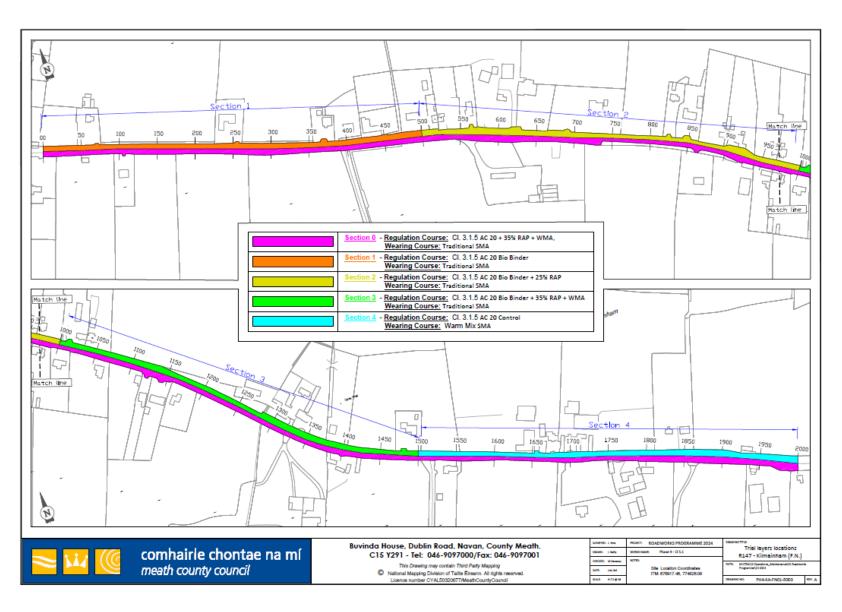
Environmental Product Declarations (EPD) are a standardized way of providing data about the environmental impacts of a product through the product life cycle.

What Are the Benefits of EPDs?


- Provide verifiable and transparent information on life-cycle environmental lacksquareimpact data for materials or products.
- Allow meaningful comparisons of the environmental performance of \bullet materials.
- Identify areas for environmental performance improvement, encouraging lacksquareindustry efficiency.

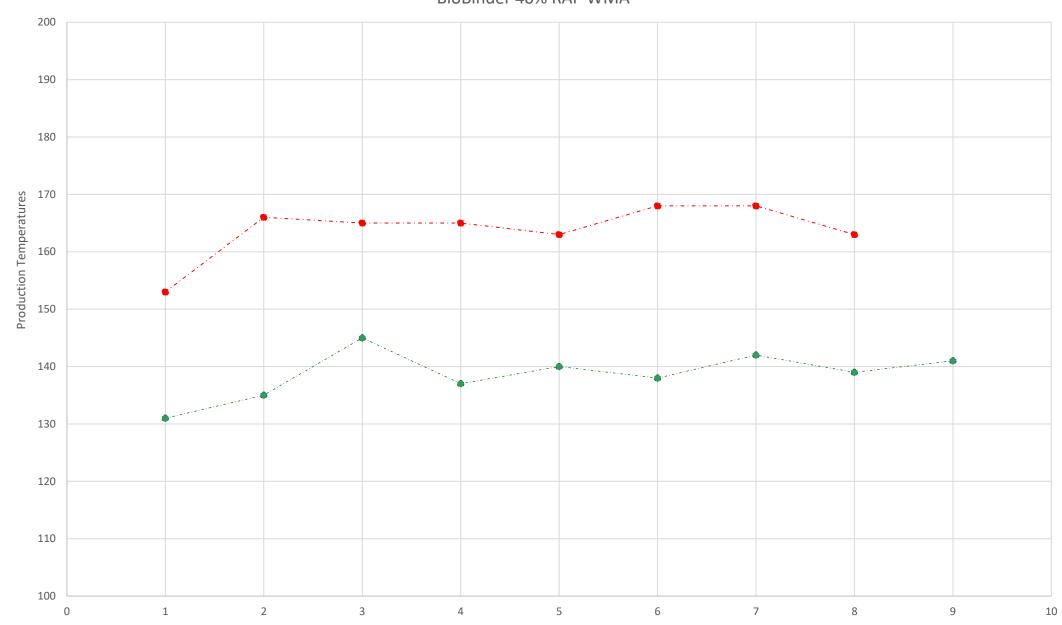
Case Study – M7 Kildare Bypass Pavement Scheme

EPD Comparison



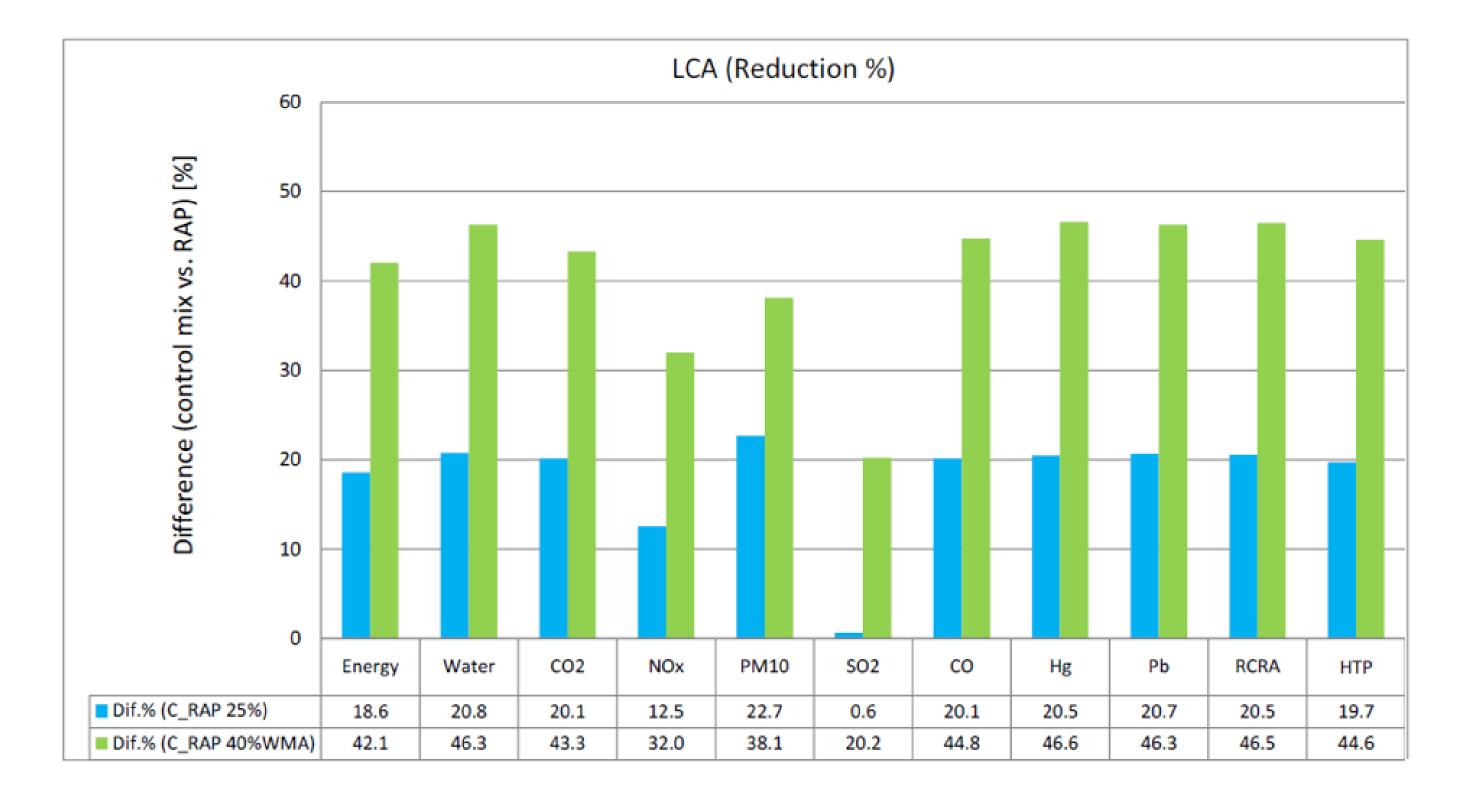
MATERIALS

Section 1 - Regulation Course: Cl. 3.1.5 AC 20 Wearing Course: Traditional SMA
Section 2 - Regulation Course: Cl. 3.1.5 AC 20 Wearing Course: Traditional SMA
Section 3 - Regulation Course: Cl. 3.1.5 AC 20 Wearing Course: Traditional SMA
Section 4 - Regulation Course: Cl. 3.1.5 AC 20 Wearing Course: Warm Mix SMA


0 Bio Binder

- 0 Bio Binder + 25% RAP
- 0 Bio Binder + 35% RAP + WMA
- 0 Control

Sustainable Materials



AC 20 Dense BioBinder 25% RAP vs BioBinder 40% RAP WMA

Life Cycle Assessment

Life Cycle Assessment

Next Steps

The long-term durability of asphalt pavements is a key aspect to sustainability, as longer lifetime means less maintenance, less use of materials, less energy, and certainly, less impacts on the environment.

An asphalt pavement is 100% recyclable, requiring that future recyclability must be ensured when new materials or wastes are added into bitumen.

The asphalt industry is committed to reducing its carbon footprint and different levers are already available to help reduce emissions now.

To maximize the benefits, industry, national government and local authorities need to work together to share successes and promote new innovative methods of road design and construction.

Next Steps

Increase the use of WMAs

Adoption of energy efficiency initiatives, such as the use of warm mix asphalt (WMA) technologies to reduce mix production temperatures.

Increase the use of RAP

Increase use of reclaimed asphalt pavement (RAP) to reduce the impacts of raw material manufacturing.

Bitumen innovation

Use of biobased materials that remove carbon dioxide from the atmosphere during the life of the feedstock material, then sequester biogenic carbon into the pavement.

Thank you

Sustainable Pavement Design and Construction – A Case Study

1.1

Update on the new Road Safety Audit standard Martin Deegan, CEng, TRAFFICO

Title: Update to The Road Safety Audit Standard

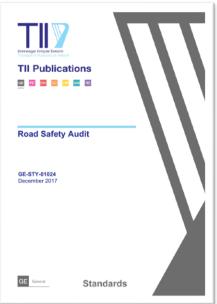
Speaker:

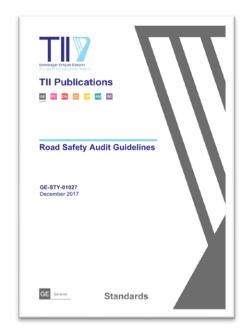
Martin Deegan traffico

Update to the Road Safety Audit Standard

Topics Coverage

- Which Standards Are Being Updated
- Why Do We Need an Update?
- Overview of Changes to the Road Safety Audit Standards
- **Remedies Being Sought for Specific Problem Areas**
- The New Road Safety Audit Approval System
- **Road Safety Auditor Training**




Which Standards Are Being Updated

Standard Name: GE-STY-01024 Road Safety Audit

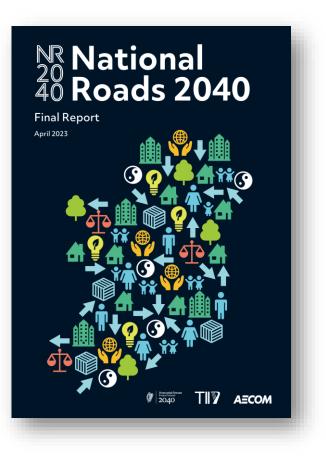
Published: December 2017

This Standard sets out the **requirements** for Road Safety Audits on the National Road Network.

Standard Name: GE-STY-01027 Road Safety Audit Guidelines

Published: December 2017

This Guideline sets out the **process** for undertaking Road Safety Audits on the National Road Network.


Why Do We Need an Update?

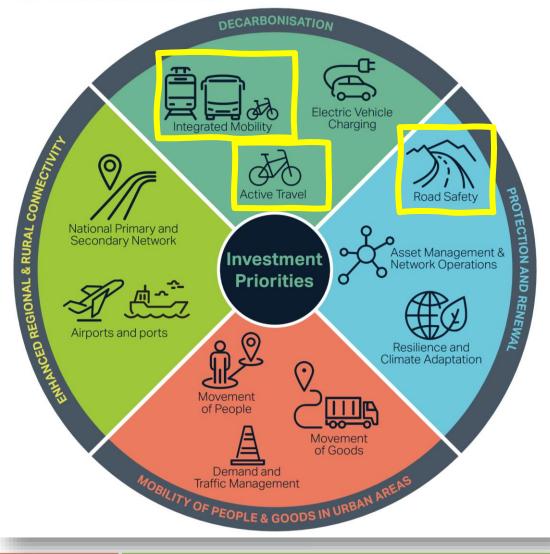
Compliance European Regulations & Irish Law

- Europe: RISM Directive 2019 / 1936 (Road Safety Infrastructure Management management) Safe Systems approach to minimising fatalities.
- Europe: Ten T Directive 2024/1679 improvement of quality of services, social conditions for transport workers and accessibility for all users.
- Ireland: S.I. No. 612/2021 European Communities (Road Infrastructure) Safety Management) Regulations 2021. Now specifically applies to all road users, including vulnerable road users.

Why Do We Need an Update? Meet Objectives Set Out in National Roads 2040 (April 2023)

The Road Safety Audit Standards will be updated to reflect Government prioritisation of:

- Road Safety
- Integrated mobility
- Active Travel



5 NATIONAL ROADS INVESTMENT PRIORITIES AND PORTFOLIOS

TII has assessed National Roads needs the need for the National Roads network to deliveralign with on relevant National Strategic Outcomes and has also identified several strategic issues for the network. These considerations have influenced the NR2040 Investment Priorities.

The NR2040 Investment Priorities align with the four NIFTI Investment Priorities and are presented in Figure 5.1.

Figure 5.1 NR2040 Investment Priorities and Portfolios

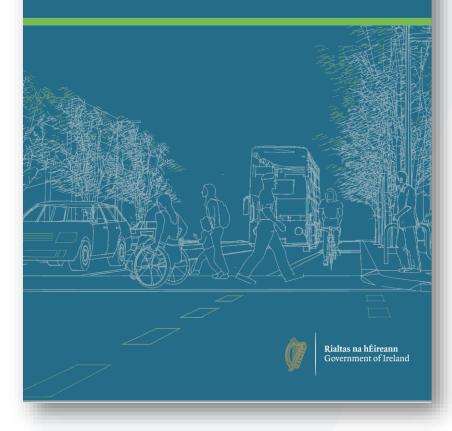
Why Do We Need an Update?

Making Provision for TII's Responsibility to Deliver Greenways

The current Road Safety Audit Standards do not provide practitioners with sufficient direction relating to:

- Greenways
- Or the Rural Cycle Network

Why Do We Need an Update?


Urban Renewal or DMURS Schemes – Protecting the National Road Network

To ensure impacts on National Road Network are minimised, the revised Road Safety Audit Standards will offer guidance on how to successfully accommodate:

- Urban renewal schemes.
- DMURS Schemes.
- The DoT NGS Circular 3 of 2022 which sets out the essential common requirement for RSA's & QA's on public roads in Ireland.

Design Manual for Urban Roads and Streets

Road Safety Audit (GE-STY-01024) **Changes to Appendix A: Scheme Type & Audit Stage**

A considerable amount of the standard changes are likely to focus on Appendix A. This will include:

- Compliance with Appendix A will become a mandatory requirement for schemes which effect National Roads.
- A reduction in schemes suitable for **Stage 1&2** Audits.
- More schemes types being considered for **Stage F** Audits
- Clarification on RSA Stages required for Active Travel Schemes.

GE-STY-0102

No Audit is required on like-for-like repair or replacement or	f existing road infrastructure
Example Scheme Description	
Pavement repair such as patching, edge strengthening which does not result in widening the carriageway, inlay works with similar materials.	No Audit Required
Pavement overlay which does not change the cross section, vertical alignment, camber or superelevation	No Audit Required
Surface rejuvenation such as mechanical abrasion etc.	No Audit Required
Surface dressing of an existing carriageway	No Audit Required
Replacement of a worn road sign with a new road sign of the same type	No Audit Required
Replacement of a damaged road sign with a new road sign of the same type	No Audit Required
Refreshment of existing worn road markings	No Audit Required
Replacement of worn or missing road studs	No Audit Required
Replacement of a length of damaged safety barrier with barrier of the same or similar type.	No Audit Required

	Example Scheme Description	Audit Stages Required X – Required (X) – Alternative to St1 and St2					
		F	1	2	1 & 2	3	4
	Off-line road scheme with multiple options.	X	X	X		х	X
New	On-line road scheme – Minor land take		x	x		х	
Alignment	required		^	^		^	
Alighthetic	On-line road scheme – No land take required				X	х	
	New junction or access onto the road		X	X	(X)	х	
	Realignment of bend				X	х	
	Realignment of junction				X	Х	
Realignment	Alteration of type of junction control, such as				~	v	
•	traffic signals, mini roundabout etc.				X	х	
	Sight line Improvements				X	Х	
	Change to the existing cross section, widening						
	or narrowing the pavement				X	х	
	Change to the existing vertical alignment				X	х	
Pavement	Change to the existing pavement which affects						
Improvements	the horizontal or vertical alignment of public or				X X	х	
	private entrances						
	Change to existing camber or superelevation		<u> </u>	-	X	x	
	Installation of road signs:		1	1	1 1		
	Single installation, multiple installations, or						
Signing &	addition or amendment to sign on existing				X	x	
Road	supports						
Markings	Installation of road markings which results in a			1			
	change to the existing road marking layout				X	х	
	and/or its meaning						
	Installation of new safety barrier		1	1	X	X	
Safety Barrier	Upgrade to an existing safety barrier				X	x	
Salety Balliel	Upgrade of an existing terminal				X	X	

Road Safety Audit (GE-STY-01024) **Changes to Appendix A: Scheme Type & Audit Stage**

A considerable amount of the standard changes will focus on Appendix A. This will include:

- Road Safety Impact Assessment will now become part of the Stage F suite of Audits.
- Clarification on RSA Stages required for **Private Developments Schemes.**
- Greater clarity provided on how other **State Agency Schemes** which impact upon National Roads should be audited.

GE-STY-0102

Example Scheme Description	
Pavement repair such as patching, edge strengthening which does not result in widening the carriageway, inlay works with similar materials.	No Audit Required
Pavement overlay which does not change the cross section, vertical alignment, camber or superelevation	No Audit Required
Surface rejuvenation such as mechanical abrasion etc.	No Audit Required
Surface dressing of an existing carriageway	No Audit Required
Replacement of a worn road sign with a new road sign of the same type	No Audit Required
Replacement of a damaged road sign with a new road sign of the same type	No Audit Required
Refreshment of existing worn road markings	No Audit Required
Replacement of worn or missing road studs	No Audit Required
Replacement of a length of damaged safety barrier with barrier of the same or similar type.	No Audit Required

	Example Scheme Description	Audit Stages Required X – Required (X) – Alternative to St1 and St2					
		F	1	2	1 & 2	3	4
	Off-line road scheme with multiple options.	х	X	X		х	X
New	On-line road scheme – Minor land take		x	x		х	
Alignment	required		^	^		^	
Alignment	On-line road scheme – No land take required				X	х	
	New junction or access onto the road		X	X	(X)	х	
					· · · · · ·		
	Realignment of bend				X	х	
	Realignment of junction				X	х	
Realignment	Alteration of type of junction control, such as				v	v	
0	traffic signals, mini roundabout etc.				X	х	
	Sight line Improvements				X	х	
					· · ·		
	Change to the existing cross section, widening				~		
	or narrowing the pavement				X	х	
. .	Change to the existing vertical alignment				X	х	
Pavement	Change to the existing pavement which affects						
Improvements	the horizontal or vertical alignment of public or				X	х	
	private entrances						
	Change to existing camber or superelevation				X	х	
					1 11 1		
	Installation of road signs: Single installation, multiple installations, or						
Signing & Road	addition or amendment to sign on existing supports				X	x	
Markings	Installation of road markings which results in a change to the existing road marking layout				x	x	
	and/or its meaning				^	~	
	and/or no mouning						
	Installation of new safety barrier				X	x	
Safety Barrier	Upgrade to an existing safety barrier			<u> </u>	x x	Ŷ	
Salety Barrier	Upgrade of an existing terminal				x x	x	-

Road Safety Audit Standards

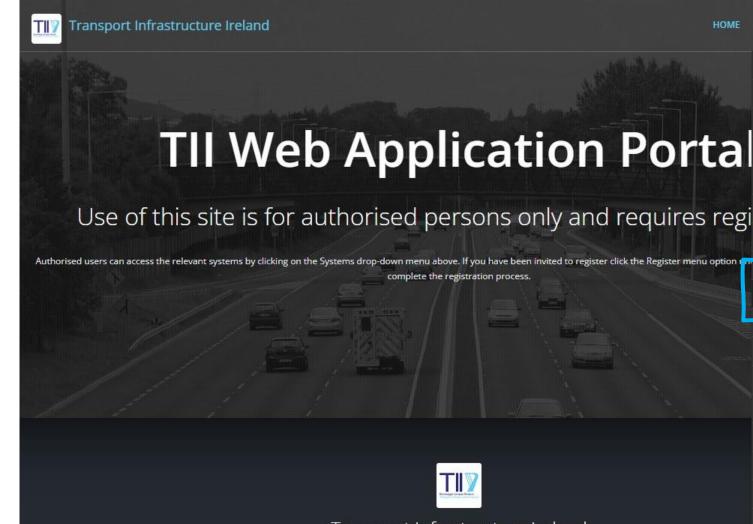
General Issues Being Addressed in the Revised RSA Standard

- Clarifications on the Road Safety Audit Process i.e. terminology, the role of the Client, Designer and Audit Team, Exception Reports etc.
- The essential need for the Road Safety Audit Feedback form to be completed by the Designer, Audit Team Leader and Client.
- Effectively managing impacts of private development and other State Agency schemes on the TII National Road Network.

The Road Safety Audit Approval System (RSAAS) Functions of the RSAAS

- The (RSAAS) manages 2 primary functions:
- 1. Validation of Safety Auditors to undertake Audits on the National Network.
- 2. Approval of Audit Teams for proposed audits on National Roads.

the National Network. ional Roads.



The Road Safety Audit Approval System (RSAAS) How to Register using the RSAAS

- Go to TII Web Application Portal: https://web.tii.ie/index.html
- Select 'Road Safety Audits' from the drop-down menu.

Departures From Standard

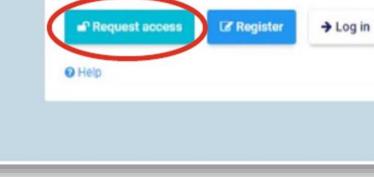
Road Works System

Road Safety Audits

Aggregate Registe

Transport Infrastructure Ireland

7


The Road Safety Audit Approval System (RSAAS) How to Register using the RSAAS

TII Road Safety Audit Approvals System

Select 'Request Access' to commence the registration process.

TII Road Safety Audit Approvals System

Welcome to TII Road Safety Audit Approvals System. Sign up using the registration page. If you are already registered user proceed with Log in button. If you need access use the Request access link.

The Road Safety Audit Approval System (RSAAS) Closing Points on the RSAAS

- The Client (scheme creator), Designer, Audit Team Leader & Audit Team Member must be separate individuals i.e. cannot complete dual roles in the RSAAS.
- The Client, Designer, Audit Team Leader & Audit Team Member have to complete the registration process for the RSAAS to be available for selection.
- The Audit Team Leader and Audit Team Member also have to be approved by TII for the completion of road safety audits on National Roads. This process is completed by the auditors and TII Road Safety on the RSAAS.

Road Safety Auditor Training Opportunities

Road Safety Audit Team Member Training

Contact Traffico for the Practical Road Safety Auditing Course:

- Email: hello@traffico.ie
- Web: <u>https://traffico.ie/Traffico-training-mainpage.html</u>

Road Safety Audit Team Leader Training

Contact ITS Sligo for the Certificate in Road Safety Audit & Engineering:

- Email: admissions.sligo@atu.ie
- Web: https://www.itsligo.ie/courses/certificate-in-road-safety-audit-and-engineering/

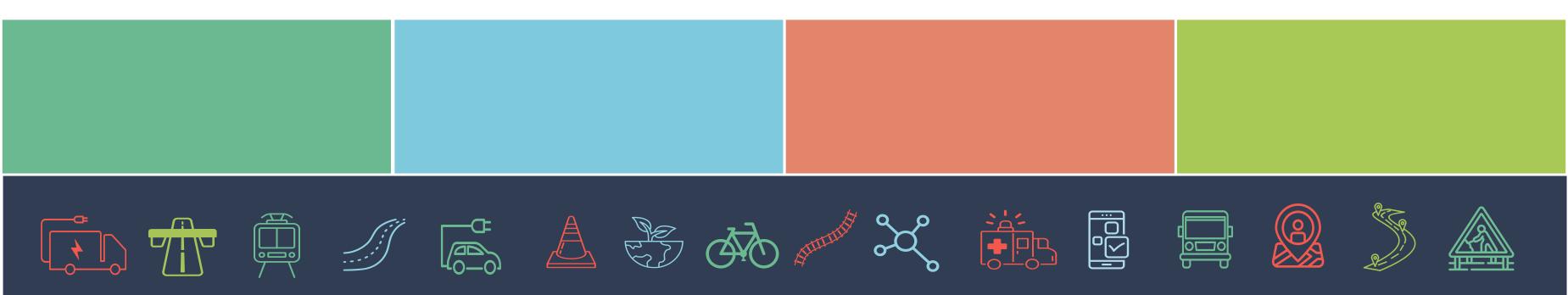
Update to the Road Safety Audit Standards

What Did We Cover?

- Which Standards Are Being Updated
- Why Do We Need an Update?
- Overview of Changes to the Road Safety Audit Standards
- **Remedies Being Sought for Specific Problem Areas**
- The New Road Safety Audit Approval System
- **Road Safety Auditor Training**

Thank you for listening!

Martin Deegan traffico


e: <u>hello@traffico.ie</u> w: <u>www.traffico.ie</u>

1.1

An introduction to Ireland's Supply Chain Sustainability School Pamela Sheridan, Operations Manager, Supply Chain Sustainability School

Fostering Sustainability in the Construction Industry: Insights from the Supply Chain Sustainability School

Pamela Sheridan

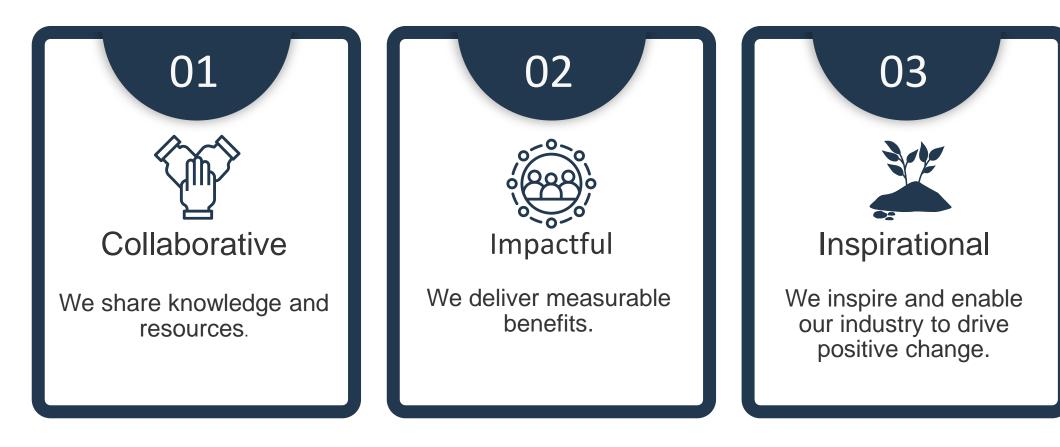
Overview

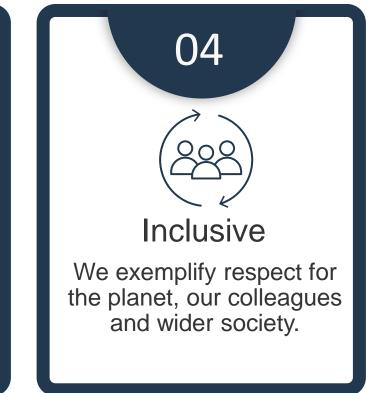
- Introduction to the School
- Key Initiatives and Partnerships
- Membership and Community Engagement
- Education and Resources

Introduction to the School

The Supply Chain Sustainability School was established to address a critical need for sustainability education within the construction industry.

Our goal is to share knowledge that spans across various sustainability topics, directly impacting how we approach construction projects today.




An industry where everyone will have the skills and knowledge to deliver a sustainable future.

Values

Our approach is founded on four shared values:

Led by Partners who guide strategic decisions.

The Structure of the School

Partners actively shape the School's daily operations and development.

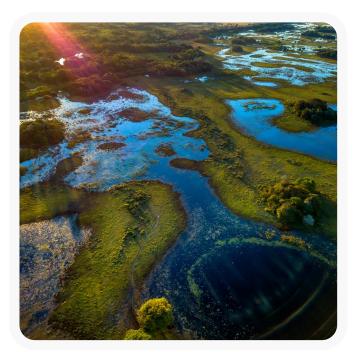
Current Partners

Energy for generations

Membership

Membership in the Supply Chain Sustainability School provides free access to a wide range of learning resources designed to enhance understanding and implementation of sustainability practices in the built environment.


Application of learned practices


How to Join and Benefit from the School

The journey from signing up to leveraging the full suite of benefits the Supply Chain Sustainability School offers is designed to be straightforward and impactful, focusing on practical tools and resources that support continuous sustainability growth.

Sustainability Learning Overview

Introduction to Biodiversity

Sustainability Strategy

Introduction to Climate Change and Carbon

Community Engagement

••••••

Case study: Sisk

Leading Sustainability Through Collaboration

Sisk's Sustainability Ambition:

- Lead industry in sustainable operation management.
- Partnerships with supply chains; sharing sustainability goals.
- Focus on lifecycle sustainability from project inception to completion.

Sisk's Role in Supply Chain Sustainability School:

- Integral in establishing the School for industry-wide upskilling.
- Promotes webinars, workshops, and engagement for workforce development.
- Advocates for the industry's transition to a sustainable, carbon-free future.

Next Steps: Engage with our sustainability initiative

Individuals & Organizations: Register and complete a confidential self-assessment to identify learning areas for targeted sustainability education. **Prospective Partners** Submit an inquiry to discuss and potentially collaborate on sustainability initiatives. Engage Access specialized resources and opportunities for education, 泛 professional development, and collaboration for wider environmental and social impact.

THANK YOU

SUPPLY CHAIN SUSTAINABILITY SCHOL 01 5240891
info@supplychainschool.ie
www.supplychainschool.ie

1.1

Speed Limit Review (2023) and implementation John McCarthy, Senior Advisor, Roads, Department of Transport

Speed Limits Ireland 2024

John McCarthy (DoT)

4 October 2024

Background

Road Network

National Roads

(Motorways, National Primary, National Secondary)

Strategic, Longer journeys, Substantially designed with safety systems but some Legacy, Higher Speeds

Regional Roads

Medium journeys, Some designed with safety systems but mostly Legacy, Medium Speeds

Local Roads

(Local Primary, Local Secondary, Local Tertiary)

Shorter journeys, Substantially legacy with little designed, Lower Speeds

Active Travel Users

Pedestrians and Cyclists

Framework – Legislation & Guidelines

Road Traffic Act 1961, Road Traffic Act 2004, Road Traffic and Roads **Act 2023 - Speed Limit Guidelines & Directions**

Speed limit guidelines

- 10D. (1) The Minister may issue guidelines relating to the making of special speed limit bye-laws, road works speed limit orders and variable speed limit schemes and may amend or cancel any such guidelines.
 - (2) Where guidelines under subsection (1) are, for the time being in force, a county council, city council or the National Roads Authority, as the case may be, shall ensure when they are making any special speed limit bye-laws, road works speed limit orders or variable speed limit schemes that such bye-laws, order or schemes are in accordance with such guidelines.
 - (3) Any guidelines issued by the Minister under section 9(9) that are in force on the day on which this subsection comes into force shall be deemed to have been made under this section.

Ministerial policy directions in relation to certain speed limits

- **10E.** (1) The Minister may, from time to time, give policy directions in writing to a county council, city council or the National Roads Authority with regard to any of its functions that relate to the application and operation of special speed limits, road works speed limits, or variable speed limits and a county council, city council and the National Roads Authority shall comply with any such direction.
 - (2) Notice of any direction given under subsection (1) and details of it shall be-
 - (a) laid before each House of the Oireachtas, as soon as may be, after it has been given, and
 - (b) published in Iris Oifigiúil and on a website operated by or on behalf of the Department of Transport not later than 21 days of it being given.".

An Roing lompair Turasoireachta agus Spóir Department of Transport, Torrism and Scot

GUIDELINES FOR SETTING AND MANAGING SPEED LIMITS IN IRELAND

Previous and Current System of Speed Limits

- **Default Speed Limits** •
- Special Speed Limits (Locally Set, Reserved Function)
 - Periodic Speed Limits
- Roadworks Speed Limits (Locally Set, Executive Function) •
- Variable Speed Limits (Updated 2023) National Managed Roads only
- Metrication in 2005 •
- Regional and Local Roads reduced in 2005 • Most rural roads have had default speed limit reduced to 80km/h from 100km/h in 2005. (90,000km approx.)

Reduction in some Defaults 2024 •

Pre 2005				48.2 <mark>30</mark> (D – U)	64.4 <mark>40</mark>		80.5 <mark>50</mark>		96.6 <mark>60</mark> (D – R)		112.3 70 (D – M)
Current	20 12.4	30 18.6	40	50 <mark>31.0</mark> (D - U)	60 37.28		80 49.7 (D – R, RL)		100 <mark>62.13</mark> (D - N)		120 74.6 (D - M)
Proposed	20	30 (D - U)	50	50	60 (D RL)	70 (VSL)	80 (D – R <i>,</i> NS)	90 (VSL)	100 (D – NP)	110 (VSL)	120 (D – M)

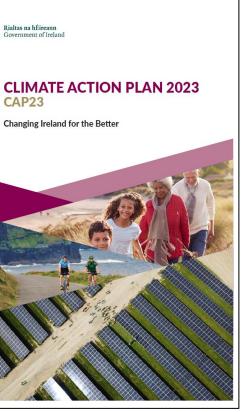
- Permitted Speed Limits in BOLD •
- mp/h in RED
- km/h in BLACK

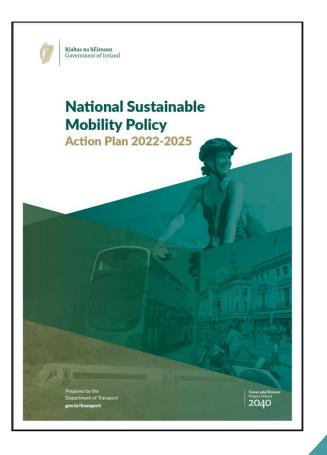
Policy Background

Programme for Government

Review and reduce speed limits where appropriate to address both road safety issues • and carbon emissions and we will ensure greater compliance. (Page 12)

Ireland Strategies


- Road Safety Strategy •
- **Climate Action Plan** •
- Sustainable Mobility •


International

- Vision Zero \bullet
- **RISM Directive** \bullet
- **TEN-T Directive**
- ISA
- UN \bullet

Background: Government Policy – Road Safety Strategy

Road Safety Strategy - Safe System Intervention Pillar: Safe Speeds

6.	Establish a working group to examine	Department	DoT Principal,	Q4 :
	and review the framework for the setting	of Transport,	Director -	
	of speed limits. As part of this review	Road Safety	Road Safety,	
	there will be a specific consideration	Authority	Research	
	of the introduction of a 30kph default		& Driver	
	speed limit in urban areas.		Education	
_ '				
7.	Establish a task force to share data	Road Safety	Director -	Q4 :
	and information on speeding, make	Authority	Road Safety,	
	recommendations and urgently implement		Research	
	any further measures identified to reverse		& Driver	
	the trend of non-compliance.		Education	

Other RSS Relevant Actions \bullet

 \bullet

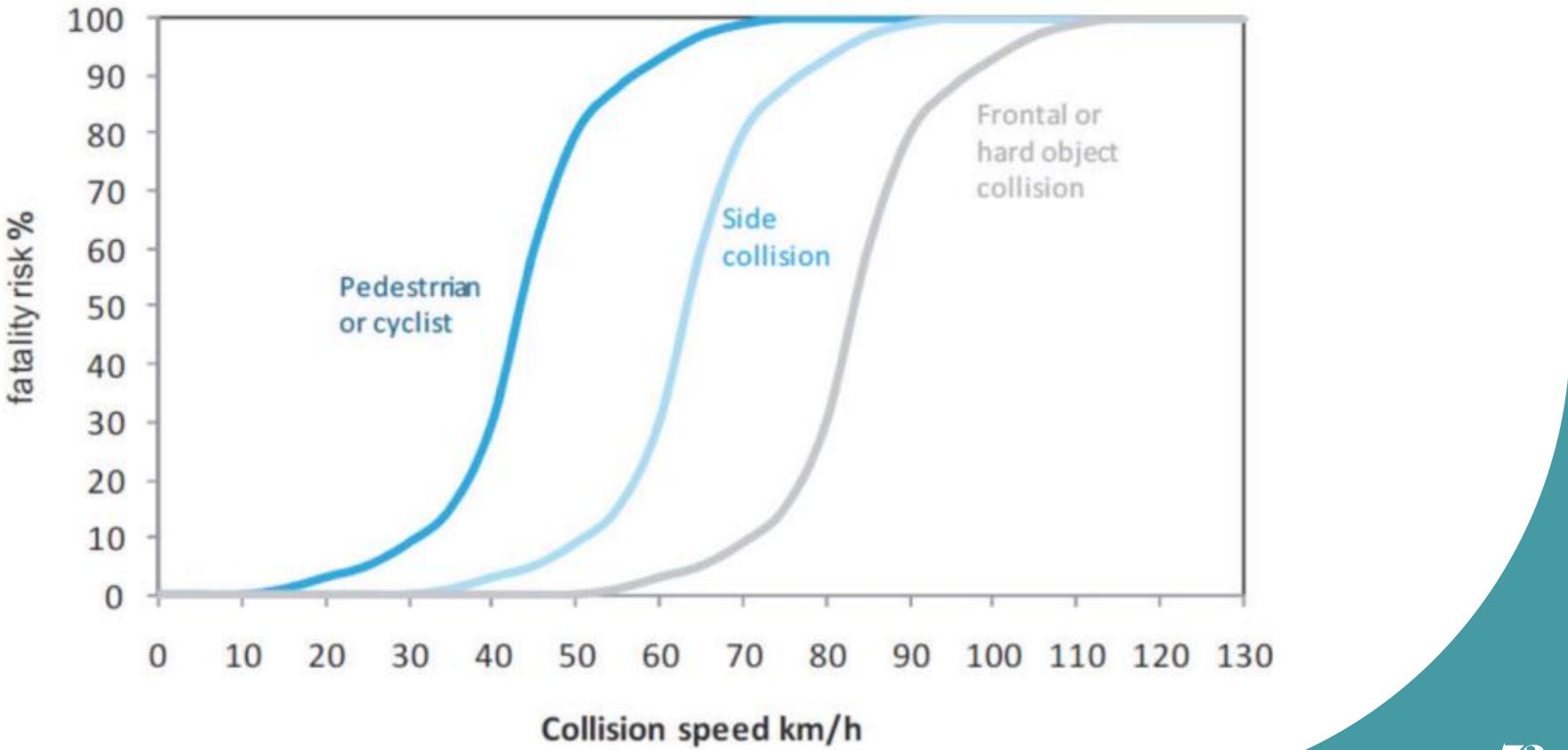
8.	Expand speed management measures on National, Regional and Local roads using Periodic Speed Limits at schools, Vehicle Activated Signs and Average Speed Cameras in collaboration with An Garda Síochána at appropriate high-risk locations.	Department of Transport, Transport Infrastructure Ireland, National Transport Authority	DoT Principal, CEO TII, CEO NTA	Q4 2
53.	Examine the implications of the installation of median barriers on roads with speed limits of 80kmh or more and make recommendations. (SPI 1)	Department of Transport, Transport Infrastructure Ireland	DoT Principal, CEO TII	Q4 20

AGS, TII, 2022 CCMA / LA's, NTA

2022 DoT, AGS, TII, CCMA / LA's

2024 CCMA/LA's, AGS, RSA

024 CCMA/LA's


Background: Safe Systems

Coordination

Embedded into legislation Embedded into other policy areas Embedded into standards

Background: Collision Risk

Background: Collision Risk

- Collision Risk
- Interaction (Conflict) with other users

• Active Travel Users

• Junctions / Intersections

• Dividing Roads

Potential conflicts and requirements associate

Possible conflicts with vulnerable road users in hor (no foot paths and pedestrians using the carriagew

Possible conflicts with vulnerable road users on roa with bike lanes or advisory bike lanes

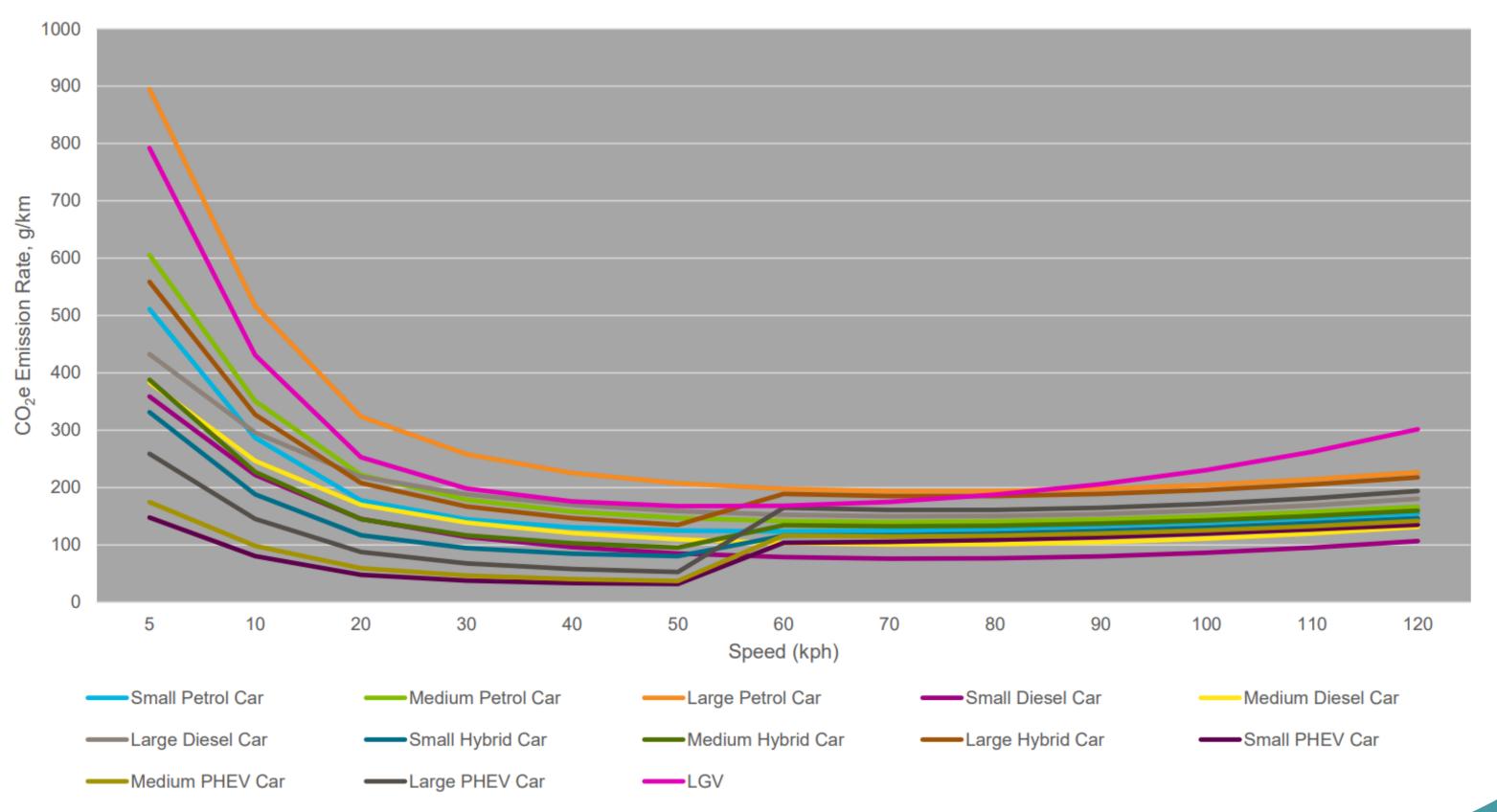
No conflicts with vulnerable road users, except wi wheelers (mopeds on the carriageway). Possible right-angle conflicts between motorised w motorised vehicles. Stopping sight distance \ge 47 m

No conflicts with vulnerable road users No right-angle conflicts between motorised vehicl motorised vehicles Obstacles shielded or obstacle-free zone ≥ 2.5 m, Stopping sight distance ≥ 64 m

No conflicts with vulnerable road users No right-angle conflicts between motorised vehicles Obstacles shielded or obstacle-free zone ≥ 4.5 m, (

Stopping sight distance ≥ 82 m

No conflicts with vulnerable road users No right-angle or frontal conflicts between motor Obstacles shielded or obstacle-free zone ≥ 6 m, (se Stopping sight distance ≥ 105 m


No conflicts with vulnerable road users No right-angle or frontal conflicts between motoris Obstacles shielded or obstacle-free zone ≥ 10 m, his Stopping sight distance ≥ 170 m

No conflicts with vulnerable road users No right-angle or frontal conflicts between motoris Obstacles shielded or obstacle-free zone ≥ 13 m, h Stopping sight distance ≥ 260 m

No conflicts with vulnerable road users No right-angle or frontal conflicts between motoris Obstacles shielded or obstacle-free zone ≥ 14.5 m, Stopping sight distance ≥ 315 m

ited with	Safe speed (km/h)
me zones vay)	15
ads and at intersections, including situations	30
vith helmet-protected riders of motorised two- vehicles, possible frontal conflicts between m	50
cles, possible frontal conflicts between , (semi)hard shoulder	60
es, possible frontal conflicts between motorised (semi)hard shoulder	70
rised vehicles emi)hard shoulder	80
ised vehicles hard shoulder	100
ised vehicles hard shoulder	120
ised vehicles , hard shoulder	130

Background: Relationship between Speed and Emissions

Key Points

- Safe Systems (Vision Zero)
- TEN-T, RISM Directives (National Roads)
 - Divided roads will be required for roads greater than 80km/h Undivided roads will be required to have a max speed limit of 80km/h
 - Lower Speeds (Pedestrians / Cyclists / Vehicles)
 - Self-explaining / Regulating Roads & Streets • Works
 - **Standards & Guidelines**
 - Compliance / Public Acceptance ISA / Camera Enforcement

Inventory of Speed Limits

- In consultation with DoT Support
 Office
- Current status of implementation of speed limits by road type – assess by region with a view to improve consistency
- Lack of data

Existing System of Speed Limits

- Existing System of Speed Limits
- LA Workshop
- Experience from Practitioners
 - Local Authorities
 - An Garda Síochana

Consultation with LA elected members

- To understand their views re
 current system of setting speed
 limits and help
 recommendations for
 enhancement
- Identify barriers and facilitators to ensure smoother operation of system

Work programme

International Practice Report

- Identify best practice
- Literature Review
- Case Studies
 - Sweden
 - France
- Arup / TRL

Modelling Report

- Currently underway by TII and NTA
- Working with NTA and TII
 transport simulation models to
 inform approach and
 recommendations to speed
 limits having regard to:
 - Safety
 - Climate impact
 - Economy

Consultation with Stakeholders

- Engagement with key
 Stakeholders such as: -
 - IRHA / FTI
 - AILG
 - Love30 / Rod King
 - Cyclists.ie
 - TUD / TCD

Recommendations

Principal

- Rural roads
- Urban roads

Specific

Examples include recommendations for speed limits in:

- Quiet Lanes
- Rural Cycleways/Greenways
- Cycle Streets (urban)
- School Limits
- Roadworks Speed Limit Zones
- Shared Space (zone)
- Pedestrian (zone)

Supporting

Examples include recommendations for:

- Design standards
- Data
- Guidelines (Priority);
 - Re-allocating Road Space
 - Settlement boundaries
 - Speed assessment framework
- Appeals process
- Enforcement
- Legislation
- Education/Training
- Communications

2023 Review - Principal Recommendations

Urban

- Default speed limit of 30kmh for built up and urban areas
 - 30kmh limit should apply, for all city or town centres, residential roads and locations where there • is a significant presence of vulnerable/active road users.
 - Exceptions may be permitted for the following: -
 - Pedestrian zones and shared space/zones whereby a speed limit of 20km/h would apply. \bullet
 - National, Regional, arterial roads and key public transport routes where limits up to 50km/h. ullet
 - Transition zones on National, Regional, arterial roads and key public transport routes where limits up to 60km/h.
 - Urban arterial roads with a high design speed such as motorways, certain dual carriageways and roads with limited access where higher limits.

2023 Review - Principal Recommendations

Rural

- Default speed limits

Remain the same on the road network, except

80km/h for National Secondary Roads (Exceptions permitted) (Currently 100km/h) 60km/h for Local Roads (Currently 80km/h)

New roads

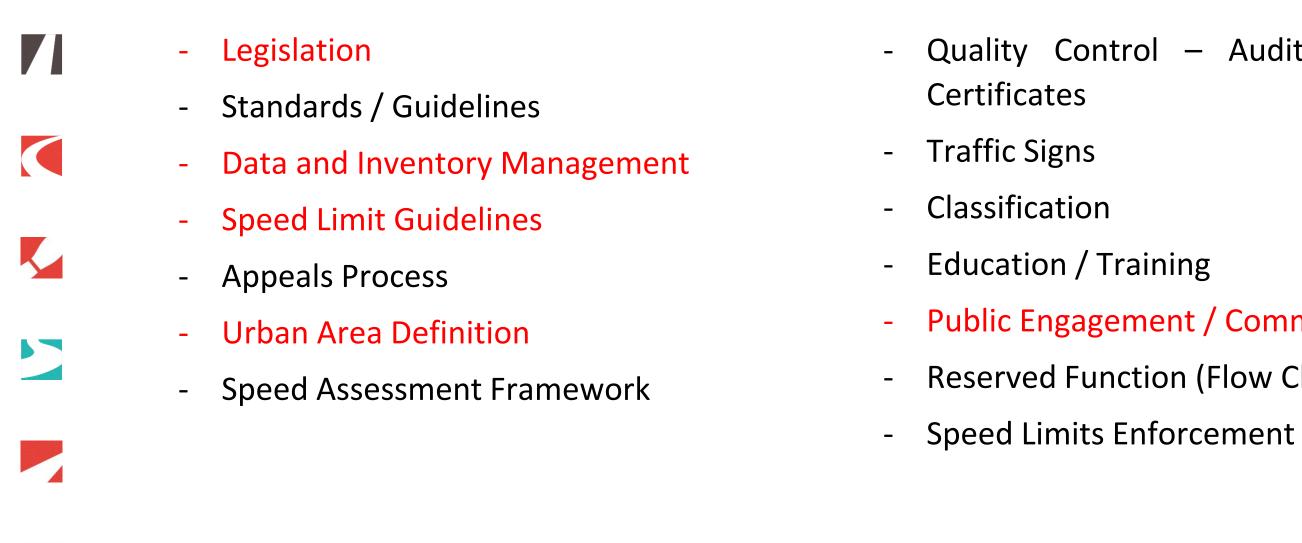
Sections of road network with a design speed / speed limit greater than 80km/h to be divided

Existing roads

Sections of National Road where it is intended to retain a limit > 80km/h to be divided by 2050 (criteria and plan by 2025)

Sections of Regional and Local Road where it is intended to retain a limit > 80km/h to be divided (criteria and approach by 2025)

2023 Review - Specific Recommendations



- Rural Cycleway / Greenway
- Variable Speed Limit Zones
- Roadworks Speed Limit Zones
- Gateways and Transition Zones

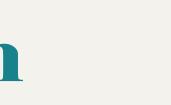
2023 Review - Supporting Recommendations

Quality Control – Audits and Compliance

- Public Engagement / Communications
- Reserved Function (Flow Chart)

Speed Limits Implementation 2024

Speed Limits Implementation


September 2023

- Main Report and 3 no Supporting Reports published
- Peer Reviewed (Sweden and TCD)

Implementation

- Form implementation group with a plan to be developed to include a programme of work for 2023 and beyond. This included in the first instance a GANTT chart.
- 3 phases: -
 - Rural Local Roads 80km/h
 - Urban & National Secondary Roads 30km/h and 80km/h
 - Schools and other remaining
- Currently Phase 1 Guidelines developed, primary legislation developed
 - Implementation of phase 1 progressing
 - Procurement of Signs Local Authorities amending Bye-Laws

Full Implementation Plan

Speed Limit Implementation

Speed Limits Implementation Group

- The key role for the Implementation group is ...
- The group is responsible for overall implementation and co-ordination of the actions from the review as well as the development of performance indicators. Priorities for the group would be: -
 - Co-ordination and oversight of Legislation and Guidelines re Priority Actions,
 - Development of Implementation plan,
 - Develop performance indicators,
 - o Monitor and report on progress.

The group is chaired at CEO level and would compose of members drawn from LAs, TII, RSA, NTA, AGS and the DoT and the DoT at PO level or equivalent. This group reports to the Road Safety Transformation Partnership Board (RSTPB).

Timelines - GANTT

		Owner		2024								2025							
		Owner	J	F	м	AN	1	l l	Α	S	0	Ν	D	J F	Μ	Α	М	J	J
Legislation & Guidelines	Primary Legislation	DoT																	
	Speed Limit Guidelines	GWG																	
	Update Traffic Signs Manual and Regulations	DoT/TII																	
	Map and Schedule Urban Speed Limit Zones																		
	Develop Speed Limit Analytical Assessment Framework																		
	Issue Circular	DoT																	
	Monitor / Co-ordinate Implementation	DoT/LA																	
Implementation (Phase 1a - Rural Local	Roads)																		
Consultation and Approval (Phase 1a)	Prepare Draft & Pre Consultation with Stakeholders	LA																	
	Initial Notification to Council	LA																	
	Notify Garda Commissioner	LA/AGS																	
	Public consultation- 30 Days	LA																	
	Revision A preparation for MD consideration (may be multiple)	LA																	
	Final draft for full Council approval	LA																	
	Commencement Day	LA																	
Signs Procurement (Phase 1a)	Quantify requirement	LA																	
	Advise sign suppliers	TII																	
	Phase 1 Order	TII/LA																	
	Erect Signage	LA																	
Implementation (Phase 1b - National Se	condary and Urban Roads)																		
Consultation and Approval (Phase 1b)	Prepare Draft & Pre Consultation with Stakeholders	LA																	
	Notify Garda Commissioner	LA/AGS																	
	Public consultation- 30 Days	LA																	
	Revision A preparation for MD consideration (may be multiple)	LA																	
	Revision B preparation for TII approval	LA																	
	TII Approval for National Roads	LA/TII																	
	Final draft for full Council approval	LA																	
	Commencement Day	LA																	
Signs Procurement (Phase 1b)	Quantify requirement	LA																	
	Advise sign suppliers	TII																	
	Phase 1 Order	TII/LA																	
	Erect Signage	LA																	
Training and Communication	Develop Strategy	All/RSA/LA																	
-	Training for Staff and Elected Members	All/LA																	
	Community Engagement	LA																	

Phase 1	Default Limits implementation (minimum period)
Phase 1	Default Limits implementation (extended period)

Priorities (DoT) – Phase 1

Legislation

- Amendments to Road Traffic Act 1961 and Road Traffic Act 2004
- Legal queries with AG
- Further amendments (possible Regs and postpone)
- Commencement (Regs)

COMS (Public, EMs)

- Plan to develop with multi-strand and multi-agency approach (rural roads first)
- Packs & material
- Website (update)

Signs

- Regs (RSL) & TSM •
- Co-ordination of procurement (TII & Cork CoCo)

Appeals Process

• Update Governance and Procedures

Funding

Signs, LAs, LGMA, COMS, Guidelines, Training, etc.

Guidelines

2 phases of work proposed: -

- New Default Speed Limits
 - Default National Secondary Roads (80km/h)
 - Default Local Roads (60km/h)
 - Default Urban Roads (30km/h)
 - 20km/h (incorporate existing separate guidelines)
- Other matters
 - Urban Definition
 - Data / Monitoring
 - Specific Recommendations
 - Mapping
 - Schools
 - Roadworks Speed Limits
 - Process & Training

Rural Roads – Single Carriageway Roads

Initial Considerations

- From the outset, the Default speed limits outlined below shall be implemented by Local Authorities, unless altered through locally adopted Special Speed Limits.
 - Where it is considered that the Default speed limit is not appropriate, such limits may be altered through Special Speed Limits in accordance with the Stage 1 and Stage 2 assessments.
 - Any amendments to the Default shall follow a Stage 1 and Stage 2 assessment. A Stage 2 Assessment is not required where a speed limit is proposed to be lowered.
- For Local roads, separate criteria shall apply when altering the speed limit from 60km/h to 80km/h.

		geway Roads eed Limits	
100 km/h	80 km/h	80 km/h	60 (m/b
National Primary	National Secondary	Regional	Local

Rural Roads – Single Carriageway Roads

Process for Assessing Single Carriageway Roads

Stage 1

- Paved width less than or equal to 7m 80km/h applies
- Paved width greater than 7m stage 2
 - Is the road on a designated route for non-motorised users?
- Stage 2
 - Assess Geometrics
 - **Other Factors**

Local Rural Roads

Process for Assessing Local Rural Single Carriageway Roads

Stage 1

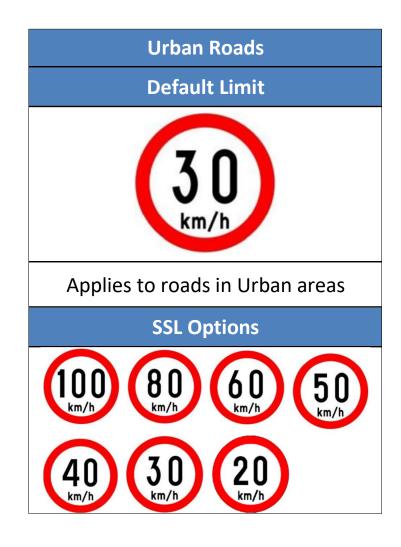
- Paved width less than 5m 60km/h applies
- Paved width between 5m and 5.5m 60km/h unless other criteria applies
 - Paved width greater than 5.5 stage 2
 - Is the road on a designated route for non-motorised users?
- Stage 2
 - Assess Geometrics
 - **Other Factors**

Urban Roads

Determination of Speed Limits in Urban Areas

A key factor for setting appropriate speed limits in built up or urban areas is that the roads or streets should be 'self-regulating' or 'self-explaining'.

The following Default speed limits (as set by the Road Traffic Act) represent the starting point to define an Urban Speed Limit Zone (USLZ).


"Built-up areas" are defined by the Local Government Act 2001 and apply to cities and former town councils that are scheduled and have a Default speed limit of 30km/h.

For urban areas outside the built-up areas, it should be noted that the Default speed limits are 60km/h (local roads), 80km/h (regional and national secondary roads) and 100km/h (national primary roads).

Urban Roads

Determination of Speed Limits in Urban Areas

Step 1:

Define an Urban Speed Limit Zone (USLZ). This can be done through the following:

- Existing urban speed limits within the 60km/h speed boundary (consistent with the principles of DMURS). These urban areas are defined by the locations of existing posted 60km/h (or 50km/h if a 60km/h sign is not present) signs at the boundary with the rural areas.

- **CSO Settlement Boundaries.**
- Other areas may also be identified in accordance with Section 7.3.6 on Villages and Towns. •

Notwithstanding the above, an Urban Speed Limit Zone should reflect existing Built-up and urban areas and should not account for potential or planned areas.

Urban Roads

Step 2:

Apply the following criteria to the road network within the Urban Speed Limit Zone (USLZ):

- •20km/h speed limits for pedestrian zones and shared space/zones;
- •30km/h speed limits for roads in defined urban cores or centres, residential roads, housing estates and locations where there is a significant interaction with **vulnerable road users**;
- •A 40km/h Special Speed Limit may be applied on roads outside a defined urban core or centre, where a 30km/h or 50km/h has been deemed to be unsuitable;
- •50km/h speed limits for national, regional, arterial roads and key public transport routes outside a defined urban core or centre;
- •60km/h for transition zones on national, regional, arterial roads and key public transport routes; and
- •Urban arterial roads with a higher design speed and/or limited access such as motorways, certain dual carriageways and other roads may have higher speed limits.

All remaining roads shall be 30km/h reflecting a default speed limit of 30km/h for Urban Speed Limit Zones.

Urban Roads – Future Workstreams

- Schools
- **Cycle Streets**
 - Urban Shared Spaces (Zones)
- **Pedestrian Zones**
- Slow Zones
- **Urban Area Definition**
- Restricted Roads (High Speed)

School Speed Zones (and Periodic Speed Limits)

Speed limits and signage at schools to be reviewed and updated to support school speed zone limits of 30km/h and 50km/h respectively on urban and rural sections of road

Cycle Streets

Where cycle streets are provided, a speed limit of 30km/h should apply

COMS

Public Awareness Campaign

- Communications Subgroup
- Media relations
- Paid Advertising
- Communications Collateral and Guidance

Phase 1

- COMS with LAs
- Role of An Garda Siochana
- Roles for Ministers, Councillors, Etc.
- Involvement of community groups
- Understanding of Signs (Rural Speed Limit Sign)
- Website <u>www.speedlimits.ie</u>

Phase 2 & 3 (Later)

- Urban Campaign (Phase 2)
- Schools (Phase 3)

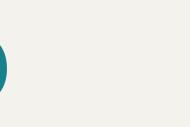
Data / Monitoring / Mapping

Data / Monitoring

- Before / After for each phase
 - Speed (TII (Arup) / LAs / LGMA)
 - Collisions (AGS / RSA / TII)
 - Behaviour and Attitudes (RSA)
- Using existing data and specifically gathered data
- Produce report on benefits and impact
- Performance Indicators

Mapping

- Standardised across country
- Full use of mapping for Byelaws
- Support enforcement
- Support ISA (in vehicle)



Priorities (Local Authorities)

Priority (for DoT) Phase 1

- DoT Circulars (3 no) issued
 - Bye Laws Progress
 - Signage Procurement

- Installation
- COMS (Public, EMs)

Sign Procurement

<u>Timeline</u> –

- Cork County Council appointed as Central Procurement Agency for LA Sector.
- 35,000 poles & 62,000 signs.
- Tender issued / returned July.
- Post tender quality inspections at each of the 4 no. supplier locations
- Orders and Approvals Signed September
- Preferred Supplier with 3 Substitutes under the existing Supply Gov Framework
- All 4 Suppliers awarded a segment to speed up delivery timeline
- First Delivery Monday 23rd September
- Note: -

Sign Procurement and installation funded by DoT

Comhairle Contae Chorcaí Cork County Council

Speed Limits Ireland 2024

Thank You

4 October 2024 John.mccarthy@transport.gov.ie

Strategic Asset Management Plan (SAMP) for National Roads.

Dr Kieran Feighan, PMS Ltd Gerard O'Dea, TII

Introduction/overview

• TII's Journey in Asset Management

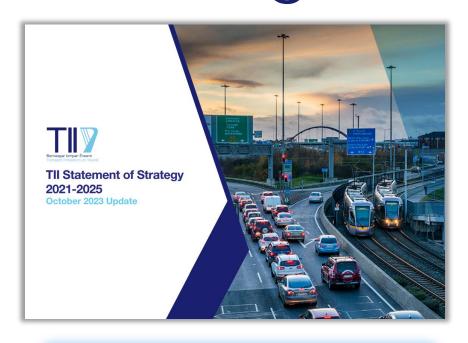
03

- Development of Local Authority SAMP / Tunnels / MSA
- Carbon Reduction in Pavements
- Active Travel Asset Management

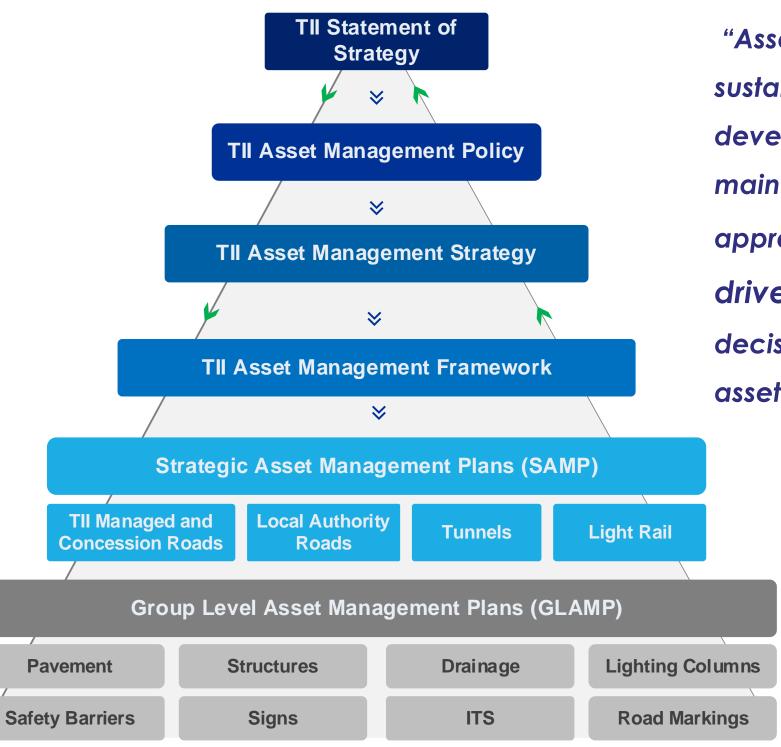
01

Strategic Asset Management Plan (SAMP) for the National Road Network

 Overview of Managed and **Concession Network – SAMP**


Next steps in Asset Management

01 Introduction


TII Asset Management Structure – Line of Sight

Goals

Existing Infrastructure

Operate, maintain and extend the life of national roads and light railway infrastructure to ensure the safety and efficiency of our transport networks, ensure appropriate management of environmental resources and contribute to the transition to a low-carbon and climateresilient society.

Asset Management Policy, Strategy, Framework, SAMP published to www.tii.ie/assetmanagement

"Assets will be managed in a sustainable manner through the development, implementation, and maintenance of an asset management approach that is risk-based and datadriven, enabling us to make informed decisions throughout the life of our assets"

Tll's Journey in Asset Management

AM Policy

AM Strategy

Asset Inventory & Valuation (Roads)

AM Framework

Management Guide

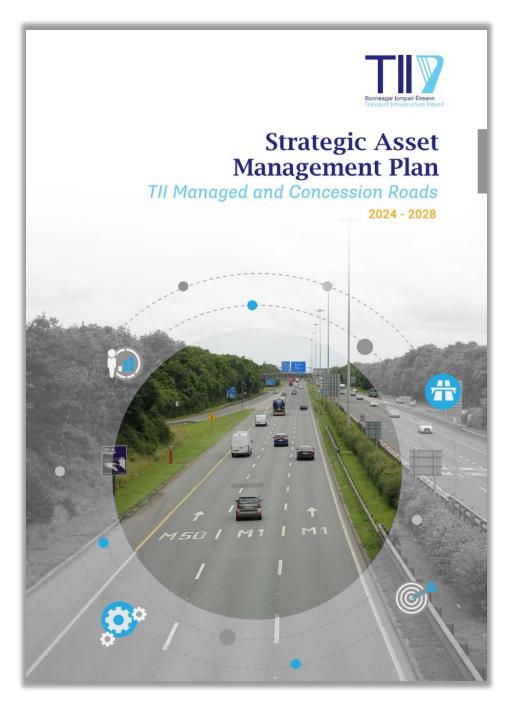
Tll's Journey in Asset Management

TII Asset Management Objectives

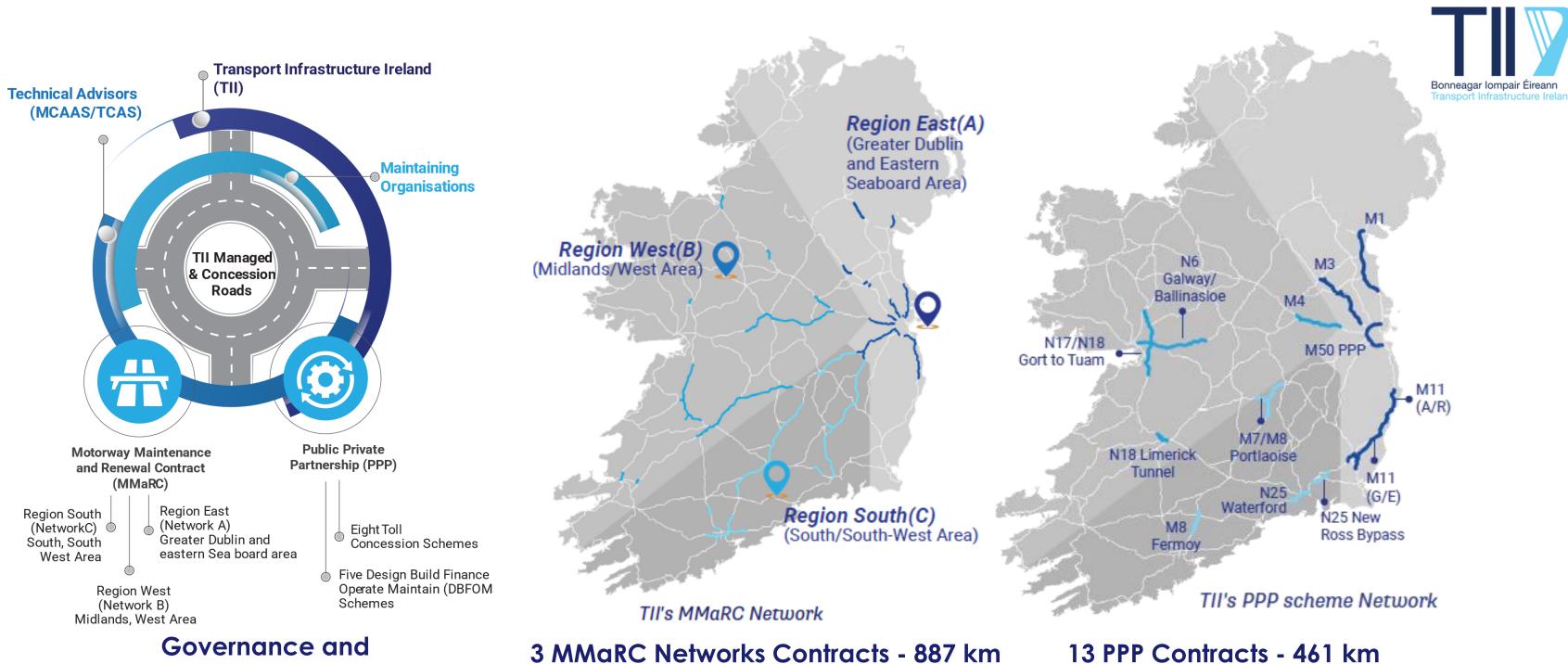
Reliability

To ensure consistent and predictable journeys for the movement of people and goods across all modes

Condition


To maintain, preserve, and extend the useful life of our transport assets

02 Strategic Asset Management Plan (SAMP) - Managed and Concession Network


Strategic Asset Management Plan – 2024 - 2028 TII Managed and Concession Network

	1. Overview	7
	Governance, Management, and Operations	9
	Network Management	10
<u> </u>	Motorway Maintenance and Renewals Contracts (MMaRC)	11
	Public Private Partnership (PPP) Contracts	12
	2. Road Network Assets	15
	and Resources	
	oraionn Data Management Systems	27
	Asset Protection and Renewal	
	About A biobilion and honowar	30
	3. Asset Management	35
	Performance	
	Safety	36
	Reliability	37
19th	Condition	38
in a	Maximising Value	38
	Customer	39
	Environment	40
	Climate Adaptation and Asset Management	41
	Sustainability	43
	Resilience	44
	AM Objectives and KPI Themes	46

ontinuing Improve	ment	55
ge Profile of the Managed and oncession Network		56
sset Management, Climate and ustainability		57
isk Management		59
sset Group: Forward View		61
sset Management Information		71
fecycle Planning		73
porting		75
set Management Expenditure the TII MMaRC Network		78
PP Handback Preparation		80
mmary of Improvement Actions		83
ay Forward		89
eople		90
overnance in line with TII's Asset anagement Framework		90
ore explicit embedment of risk anagement principles in AM rocesses		90
PP Handback processes		90
doption/ Implementation of New M Objectives		90
limate Adaptation		91
tegration of other assets into ne dTIMS System		91
ncreasing the forward time horizo lanning asset renewal interventic		91
nprovements to Asset Inventory athering – and better recording oj enewal interventions.	fasset	91

Management Structure

(incl. Tasked Maintenance Areas (TMAs))

Snapshot of TII Managed and Concession Network

454 Full-time and 179 Part-time

Safety

To ensure transport networks that are secure and safe for all.

Themes	Basis for Indicators	Potential Metric	Implementation
Accident Rate	Collision/fatality/injury statistics	Contractor lost time accident frequency rate	Present
	Procedural compliance for	Percentage of safety inspections and patrols carried out	Present
Asset Care	identification, rectification of hazards	Average defect repair time - Cat 1 / Cat 2 / Overall	Present
Regulation	Compliance with regulations/ standards for safety critical assets - e.g. condition of statutory signs	Sign retroreflectivity	Future
Skid Resistance	Annual skid resistance monitoring programme	Percentage of traffic on roads with SC value within 5 points of IL	Present

To ensure consistent and predictable journeys for the movement of people and goods across all modes.

Themes	Basis for Indicators	Potential Metric	Implementation
	Minimise delay caused by	Static lane closures exceeding permitted contract times	Present
Delay	lane closures	Average additional delay due to roadworks, compared to a benchmark journey time before roadworks were in place.	Future
		Difference between the observed travel time and the speed limit travel time	Future
Incident	Incident Efficiency of incident response	Incident response times	Present
		Percentage of incidents responded to within target time for each category of response	Present
Reliable	Importance of reliability to freight movement	Freight travel time reliability	Future
Movement	Network availability/non availability	Percentage of time that network is available for uncongested use	Future

Condition

Themes	Basis for Indicators
Maintenance Requirement	Condition mapped against acceptable lev
Observed Condition	Asset condition
	Asset performing as expected
Availability	Measure of availability
Providence Max Valu	imising To pl le colla
Themes	Basis for Indicators
Asset Value Preservation	Investment vs. depre
Asset Investment	Level of funding com funding needs

To maintain, preserve, and extend the useful life of out transport assets.

	Potential Metric	Implementation
el	Asset condition (Percentage in desired condition/ acceptable condition)	Present
	Pavement surface health	Present
	Pavement surface safety (skid resistance)	Present
	Pavement structural health	Present
	Bridge condition rating	Present
	VRS - condition rating and defect reporting	Future
	Lighting - condition rating and defect reporting	Future
	Street lighting operational	Present
	Percentage of time that roadside technology assets are available and functioning.	Present

lan, build, operate, and maintain the transport system, through uboration and appropriately targeted investment choices.

	Potential Metric	Implementation
ciation cost	Change in asset € value	Future
pared with	Asset Sustainability Index (% needs funded), ASI (Maintenance), ASI (Renewals) etc.	Present

Customer

Themes	Basis for Indicators	Potential Metric	Implementation
Customer Information	Accuracy and timeliness of information	Use of and accuracy of ITS signage messaging	Present
		Perceived quality of the maintenance of roads based on annual survey of road users	Future
Road User / Customer Satisfaction	Customer experience of network	Percentage of drivers who are satisfied with their journey on the MMARC/PPP road network	Future
Satisfaction		Percentage nighttime works to minimise disruption to users on high occupancy routes	Future
Equity/ Inclusion	Awareness of customer needs	Percentage of customer facing staff that have completed disability awareness training	Present

Senvironment

To provide efficient and effective transport systems with positive environmental benefits.

Themes	Basis for Indicators	Potential Metric	Implementation
Air Quality	Proportion of network in exceedance of air quality targets	Percent length of managed motorway network in exceedance of the legal nitrogen dioxide (NO2) limits	Future
	Management of invasive plant species	No. or area of invasive alien plant species treatments required	Future
Biodiversity	Biodiversity	Reduction/modification to grass cutting regime	Present
	enhancement	Implement biodiversity accounting metric	Future
Noise	Noise Measurement	The number of households within mitigated Noise Important Areas where noise complies with noise requirements through funded projects	Future
	Inspection and maintenance of environmental noise barriers	Present	
Litter	Clean roadsides	Compliance with litter collection activities	Present

Cø Susia			note the sustainability of our transport syst g the principles of the circular economy.	ems while
hemes	Basis for Indicators		Potential Metric	Implementation
			Scope 1 CO2 emissions from MMARC/PPP activities	Present
Carbon Emissions	Need to reduce carbo emissions from base		Scope 2 CO2 emissions from MMARC/PPP activities	Present
			CO2 emissions associated with the maintenance fleet	Future
	Increase direct renev energy output	vable	kWh of energy generated through own renewable sources	Present/Future
inergy Consumption	Need to reduce energe consumption	gy	Reduction in total energy consumed in MMARC/PPP activities	Present
			kWh of energy used for public lighting	Present
Vaste Nanagement	Circular economy		Percentage of waste materials re-used or	Present
gomont			recycled	
Vater Consumption	Water reduction		Percentage of water used collected from rainwater	Present
Vater Consumption	ilience	resilie	Percentage of water used collected from	
Vater Consumption Consumption Resi Themes	ilience To the	resilie Poten	Percentage of water used collected from rainwater tively assess, plan, and invest in strategies ence of our network.	that ensure
Vater Consumption	ilience To the Basis for Indicators	Poten Num Lane	Percentage of water used collected from rainwater tively assess, plan, and invest in strategies ence of our network.	that ensure Implementation
Vater Consumption Consumption Resi Themes Flooding	Basis for Indicators	Poten Num Lane netw Perce	Percentage of water used collected from rainwater tively assess, plan, and invest in strategies ence of our network. tial Metric ber of reported flooding incidents closure duration on the managed motorway	that ensure Implementation Present
Vater Consumption Consumption Response Winter	To the	Poten Numi Lane netw Perce in col	Percentage of water used collected from rainwater tively assess, plan, and invest in strategies ence of our network. tial Metric ber of reported flooding incidents closure duration on the managed motorway ork due to flooding entage of winter service treatments carried out	that ensure Implementation Present Future
Vater Consumption Consumption Response Winter Treatments	Ilience To the	Poten Numi Lane netwo Perce in col Time after Perce	Percentage of water used collected from rainwater tively assess, plan, and invest in strategies ence of our network. tial Metric ber of reported flooding incidents closure duration on the managed motorway ork due to flooding entage of winter service treatments carried out mpliance with the required timescale to restore minimum required performance level	that ensure Implementation Present Future Present

 \bigcirc

Climate Adaptation

0-

Carbon Reduction, Climate Adaptation and Asset Management

AM Objective	Potential Metrics (Present)	Potential Metric
Sustainability	 Scope 1 CO2 emissions rel. to baseline Scope 2 CO2 emissions rel. to baseline Maintenance fleet converted to EV (%) Reduction in total energy consumed Proportion of lighting that is LED Percentage of water from collected rainfall CO2 emissions associated with the maintenance fleet 	 kWh of energ renewable so
Resilience	 Number of reported flooding incidents Percentage of winter service treatments in compliance with required timescale Percent carriageway length not susceptible to carriageway surface water problems 	 Lane Closure Time to resto performance Percent of invidentified vulr

- Sustainability objective: Key Performance Indicators relating to Carbon Emissions, Energy Consumption, Waste Management and Water Consumption on the managed motorway network are introduced
- Resilience objective, KPIs relating to Flooding Response, Drainage, Winter Maintenance, Addressing Vulnerabilities and Recovery Time have been developed

cs (Future)

gy generated through own ources

e duration due to flooding ore minimum required level after disruption vestment addressing nerabilities

Summary of Improvement Actions

Areas	Actions
	Review and update trigger levels and KPIs, integrating whole-of-life analysis with a focus on embedded carbon.
	Consider expanding annual condition inspections to assess additional lane characteristics.
	Monitor the composition of bituminous binders to ensure future achievement of surface lifespans.
	Evaluate the feasibility of replacing bituminous binder with bio binders for carbon reduction, considering longevity effects.
Pavement	Innovatively use rejuvenators on the MMaRC and PPP networks to extend effective surface life.
Favement	Consider increased use of high PSV recycled aggregate in surface layers for sustainability and circular economy benefits.
	Continue to develop innovative tests for aggregate skid resistance to expand sources of high skid resistance aggregates.
	Develop a costed asset renewal programme for bridge components to secure funding for life cycle interventions.
Structures	Implement periodic repainting of steel bridge elements to prevent corrosion and maintain structural integrity.
	Prepare for bridges' handover from PPP to direct TII management. Develop policies and allocate resources for maintenance transfer, including assessment timing and funding.
	Establish a separate management structure for large-span cable-stayed structures from inspection through post-handover maintenance.
	Implement dTIMS bridge management software for prioritised repair and rehabilitation, enabling long- term forecasting under varied funding scenarios.

Conclude research on probabilistic-based bridge performance modelling, using the EIRSPAN database for lifecycle cost analysis of road network structures.

Areas

Actions

Assets

Implement Asset Management concepts for geotechnical assets, including slopes, embankments, walls, and unstable subgrades, to effectively measure and manage life-cycle risk, performance, and investment.

Intelligent Transport Systems (ITS) Assets Transportation Systems (ITS).. Periodically review the necessity of maintaining a network of roadside telephones in a mobile phone-

Evaluate emerging tolling technologies within the evolving landscape of telematics and Intelligent

saturated environment. Regularly review asset lifespans, adopting maintenance approach reflecting technological

advancements and power sources.

Continuously reassess Variable Messaging Systems (VMS), especially regarding ongoing developments in Connected Autonomous Vehicles (CAV) technology.

Continue developing and utilising degradation models in the Asset & Fault Management System (AFMS) to guide timely and cost-effective interventions for TII's ITS equipment.

Map and classify current drainage assets, including gullies, channels, chambers, drains, and pipes, for climate adaptation purposes.

Perform vulnerability mapping and establish a programme to address high-risk areas identified in the assessment.

Evaluate existing culvert capacity considering future rainfall predictions.

Drainage and Hidden Assets

Assess the risk of Bridge Scour under present and anticipated climatic conditions.

Formulate a Bridge Scour Mitigation Programme as needed, which may include retrofitting measures for existing bridges.

Develop comprehensive ducting mapping, including location and capacity details over time, to support effective asset management.

limate	Sustainability	Risk
	\checkmark	V
	\checkmark	\checkmark
		1
		•
		\checkmark
✓	\checkmark	\checkmark
✓	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark
\checkmark		\checkmark
\checkmark		\checkmark
✓		\checkmark

Areas

Actions

Assess biodiversity measures' impact on drivers' sight-lines, addressing inappropriate planting obscuring visibility.

Evaluate sign cleaning cycle (frequency and effectiveness) to optimise lifespan and visibility day and night.

Review how retroreflectivity surveys can strategically target road marking replacement in addition to cyclical approaches.

Road Signing and Delineation

Evaluate and adjust winter maintenance activities in anticipation of a reduced number of frost days due to projected warming.

Assess increased rainfall impact on surface water layer thickness. Review road marking material specifications and consider alternatives for varying water thicknesses due to intensified rainfall.

Prioritise consistent and detectable lane markings and delineators to ensure reliable CAV navigation.

Support long-term landscape management through consistent implementation of short-term maintenance and operational procedures.

Facilitate successful landscape management through robust contact requirements and reviews

Ensure planning and design guidance creates resilient, functional, and self-sustainable landscapes.

Map the landscape to establish baseline data, enabling ongoing reporting to monitor landscape as resources change.

Landscaping

Investigate the value of existing or planned TII landscapes concerning carbon storage and sequestration.

Develop action plans for extreme weather events in landscape management, including winter storms and summer droughts.

Continue with the 'Switch-Off Programme' and monitoring of both treated and control sites.

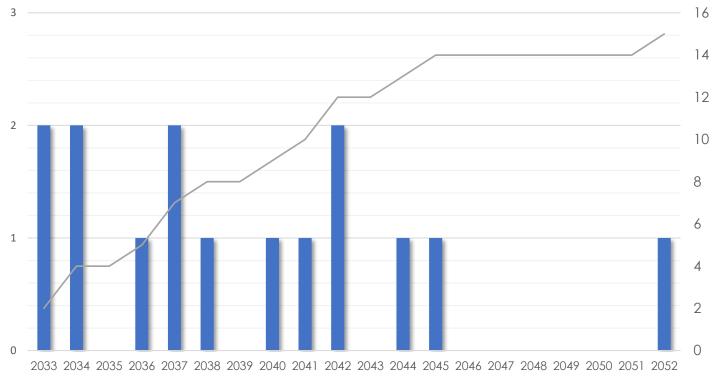
Investigate and monitor speed impacts, maintaining the policy of installing new road markings and studs when removing or switching off lighting.

Lighting

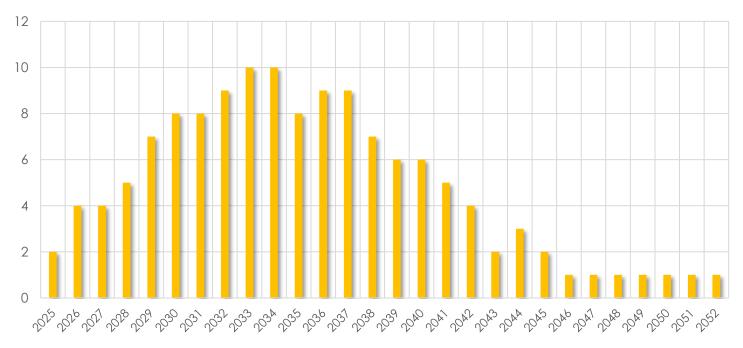
Proceed with phased removal of redundant lighting poles at MMaRC and PPP junctions, prioritizing locations without safety barrier protection for lighting poles.

Climate	Sustainability	Risk
√	\checkmark	
		\checkmark
		\checkmark
V	\checkmark	\checkmark
V	\checkmark	\checkmark
\checkmark		
\checkmark		
	\checkmark	
	\checkmark	
	\checkmark	
\checkmark	\checkmark	\checkmark
\checkmark	\checkmark	
		\checkmark
\checkmark		

Areas	Actions	C
	Develop a biodiversity accounting metric for new projects and track progress on project-specific biodiversity enhancements.	
	Establish the biodiversity baseline of the entire TII Network using the biodiversity accounting metric.	
	Implementation of targeted research, mitigation, and, where applicable compensation.	
Biodiversity	Identification and mitigation, where feasible, of priority species collision hotspots on the existing road network.	
	Eradicate, control and prevent the spread of Invasive Alien Species on new projects and the existing network.	
	Integrate asset age and condition information from TII systems like dTIMS and EIRSPAN/dTIMS with selected outputs from MMaRC and PPP databases, and maintenance contractors.	
	Establish automated processes with FME technology for seamless integration across systems, enhancing data analysis capabilities.	
	Expand MapRoad system use to MMaRC contracts for easy recording and geo-referencing of detailed project information. Encourage PPP operators to adopt same approach.	
Asset	Capture geo-referenced and detailed records of maintenance and renewal activities for various asset types on a routine basis.	
Management Information & Systems	Develop a standardised coding system for all assets, potentially aligning with TII Specifications for Road Works Series, for detailed expenditure breakdown by asset type.	
	Prioritise data types to be collected and consider establishing different "tiers" for assets based on their importance and impact.	
Lifecycle Planning	Develop a holistic cost-benefit analysis approach, considering factors beyond the asset's lifespan, such as safety, traffic delays, and embodied carbon.	
	Incorporate costs related to embodied and emitted carbon directly resulting from road construction or maintenance, including road user effects from these activities.	
	Endeavour to minimise all relevant and quantifiable costs over the asset life cycle while maintaining the required performance.	

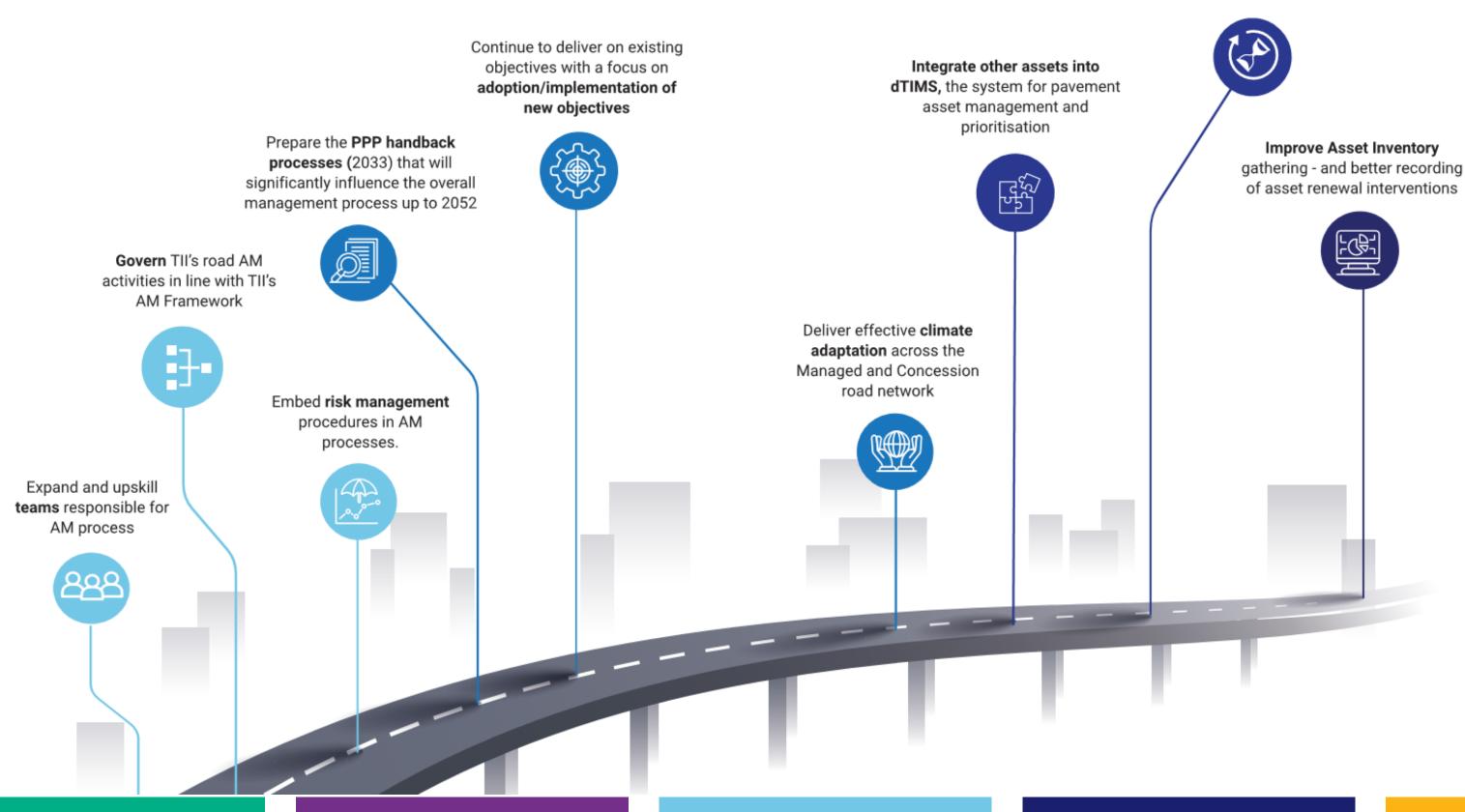

Areas	Actions	Climate	Sustainability	Risk
	Assess additional data collection needs to support enhanced programs for signs, road markings, VRS, and other assets on MMARC and PPP sections.			\checkmark
	Enhance data collection, reporting, and analysis to align with existing and proposed KPIs for the eight Asset Management objectives.	\checkmark	\checkmark	\checkmark
	Prioritise Climate Adaptation objectives, focusing on Sustainability and Resilience KPIs.	\checkmark	\checkmark	
Reporting	Establish a systematic approach for monitoring and reporting progress in carbon reduction, responding to the growing requirement in these areas.	\checkmark		
	Implement projects identified in TII's Climate Action Roadmap to reduce scope 2 emissions by 2030 on managed motorway sections.	\checkmark	\checkmark	
	Continuously measure, monitor, and improve performance related to scope 1, 2, and 3 emissions on the managed motorway network.	\checkmark	\checkmark	
	Analyse multi-year KPI data to set meaningful targets aligned with TII's established goals, particularly in areas such as Climate Adaptation and Response.			\checkmark
	For newly proposed KPIs, assess trends and compare with international benchmarks before establishing realistic targets.			\checkmark

Preparation for PPP Handback


First Scheme Handback – 2033 Pre-planning period of 7 to 8 years

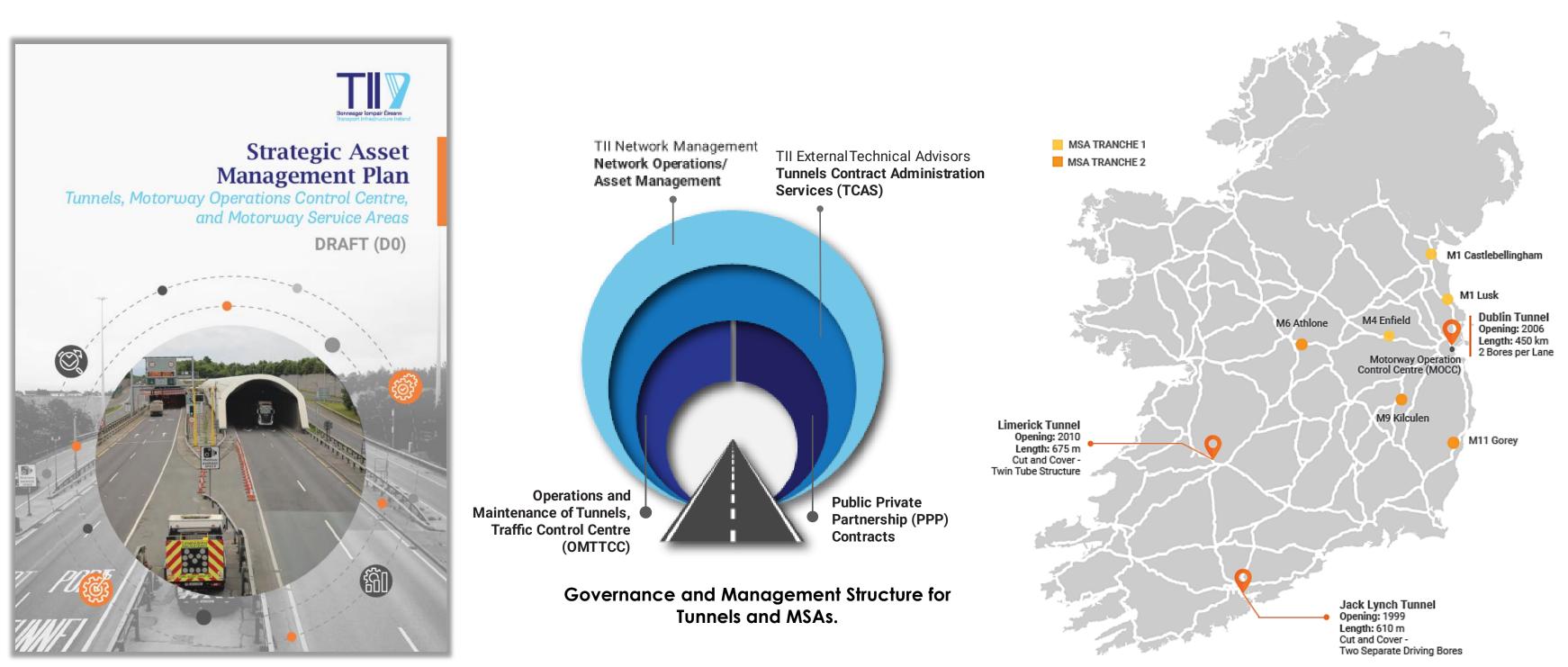
Document	Author
Preparing for PPP Contract Expiry – An overview of practical experiences and lessons learned so far."	EPEC -The European PPP Expertise Centre 2021
"Preparing for PFI Contract Expiry"	Infrastructure and Projects Authority (IPA) UK- 2022
"Managing the Risks of PFI Contract Expiry"	Infrastructure and Projects Authority (IPA) UK- 2021
"Case Studies of Handback Experience with Public- Private Partnerships"	United States Department of Transport-2017
Managing PFI assets and services as contracts end	National Audit Office (NAO) UK -2020

No of Schemes

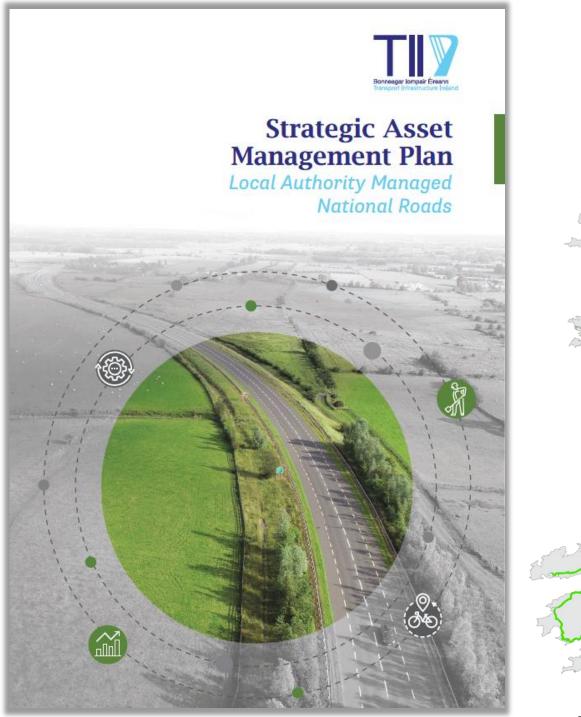

Number of Schemes at Handback Stage (Based on 8 Year Pre-Planning Period)

PPP Handback Profile

The Way Forward


Increase the forward time horizon for planning asset renewal interventions

03 Next Steps in Asset Management


Tunnels MSA MOCC SAMP

Motorway Operation Control Centre (MOCC), Motorway Service Areas (MSAs), and Tunnels.

Local Authority SAMP

LA-Managed National Roads: 3968 km (c. 75% of network)

Part 1 (Overview)

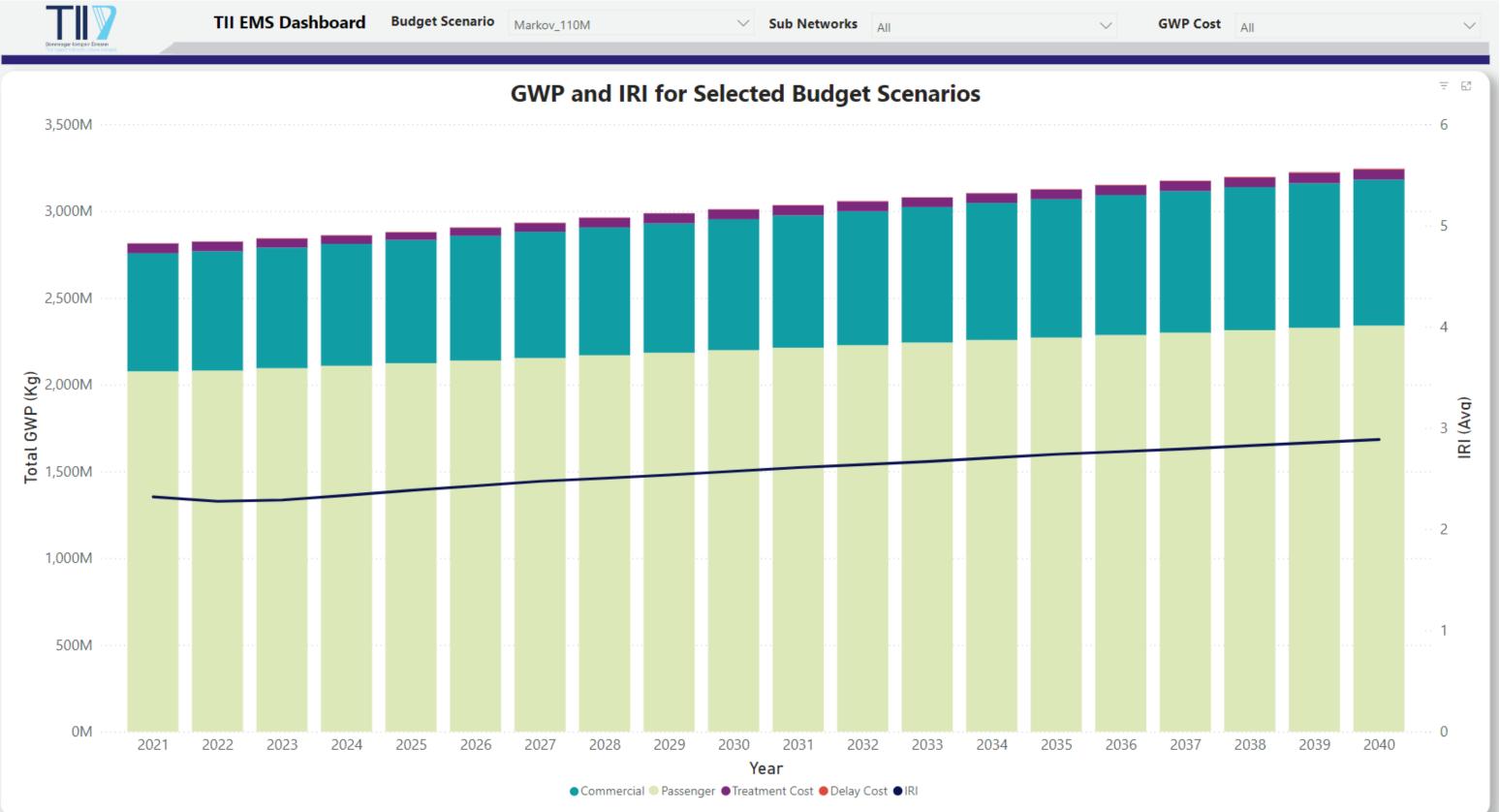
Governance structure, management and operations, and funding arrangements for the LA-managed national roads.

Part 2 (Assets and Resources)

Scale and Diversity of Assets being Managed.

Part 3 (AM Performance)

Alignment of LA operations and output with the eight AM objectives set by TII.


Part 4 (Continuing Improvement):

Forward-looking, medium to long-term view of issues that need to be examined and addressed on the LA-Managed National Road Network (Lifecycle Planning, Optimisation, Investment Needs, Programme Development, Reporting).

• Part 5 (The Way Forward):

Future directions for asset management, including resources, improving governance, and integrating new asset management objectives.

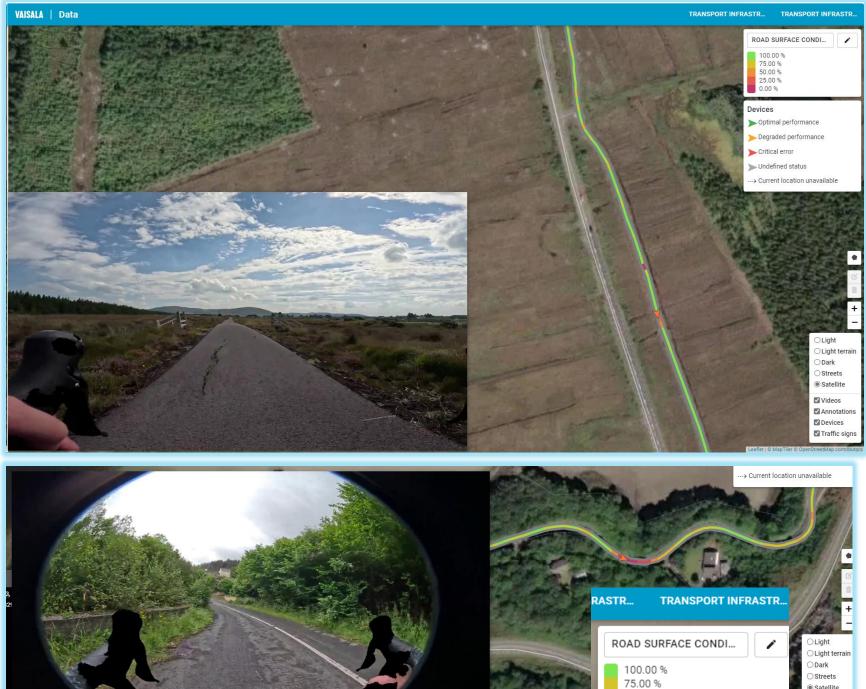
Carbon Assessment – Pavements – dTIMS EMS

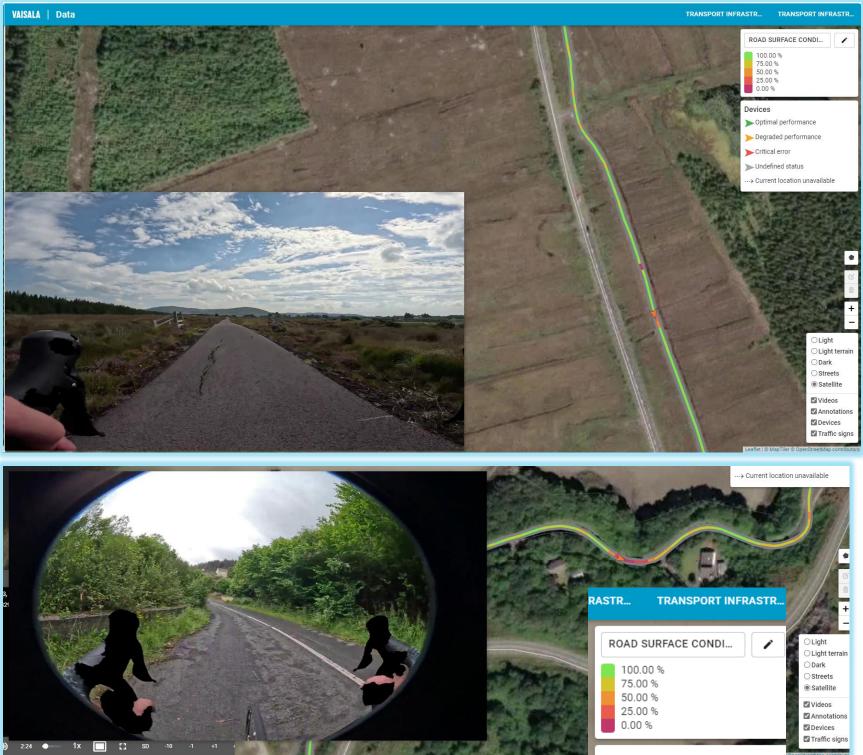
Carbon Assessment – Pavements – Maproad

Active Travel Asset Management – R&D / Innovations

Current

- ESRI AGOL Field Maps Collector App
- GoPro Georeferenced Video– UbiPIX
- Vaisala Road Al App
- MapRoad Inventory and Data Capture


Future


- University of Galway ATI Machine Learning -Research
- VivaCity Al Sensor
- Trial Xenobike LiDAR.

Thank you for your attention

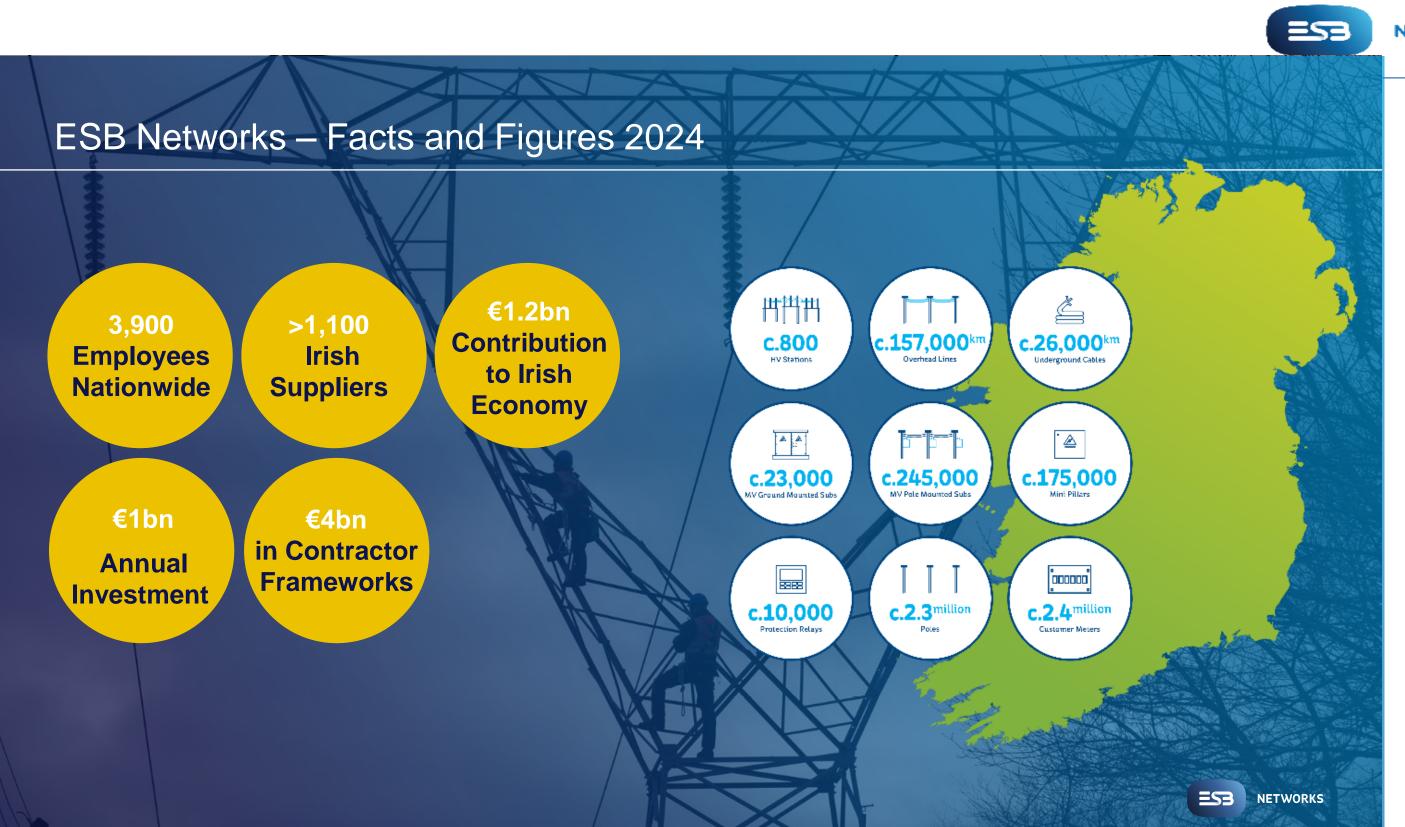
Collaboration between ESB and Road Authorities *Cormac Collins, Delivery Manager, ESB Networks*

TII National Roads and Greenway Conference 4th October 2024

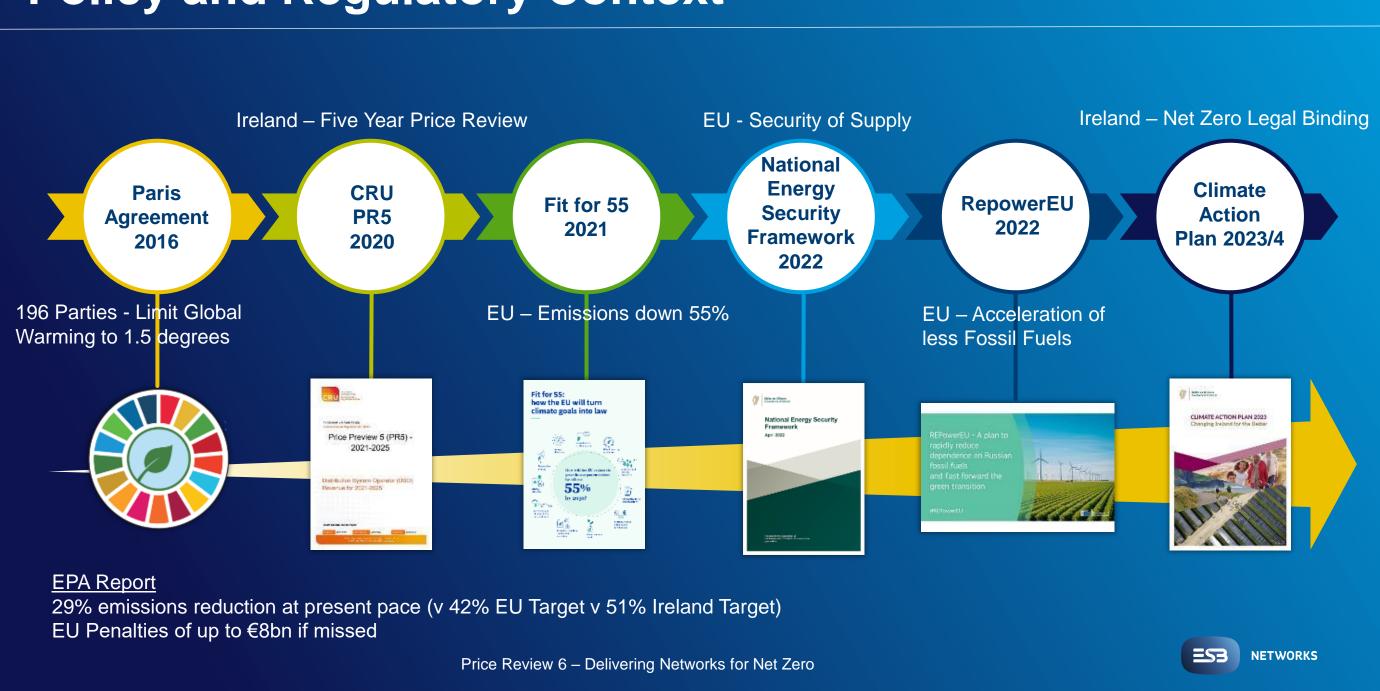
Cormac Collins, Networks Projects Delivery Manager

Agenda

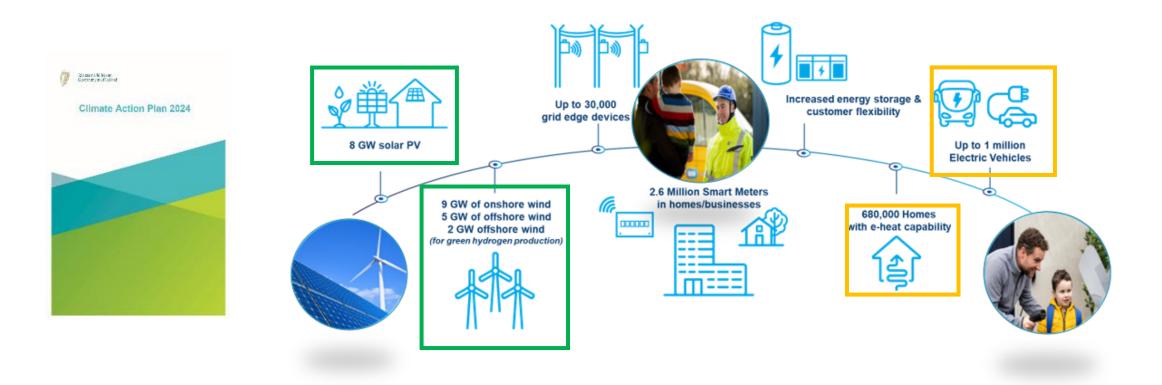
Introduction


- ESB Networks
- Grid Change Drivers
- Constructing Grid Infrastructure
 - Collaboration

•

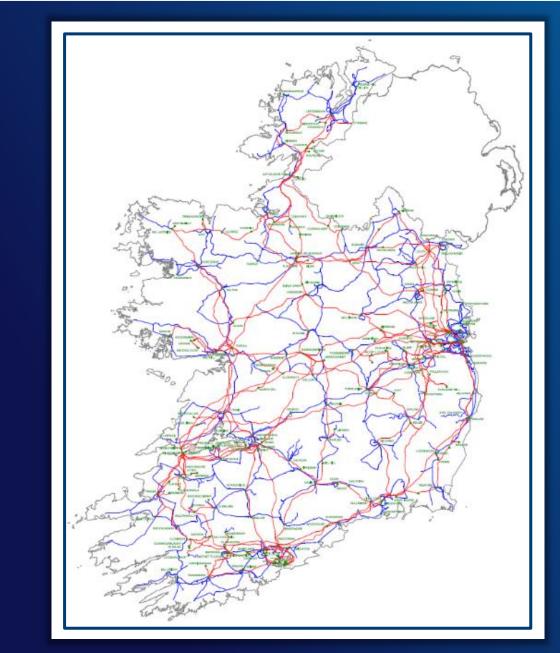

NETWORKS

NETWORKS


Policy and Regulatory Context

NETWORKS

Electrical Energy Landscape


NETWORKS

ESB HETWORKS

NETWORKS FOR NET ZERO Delivering the Electricity Network for Instand's Clean Electric Puture Incommunication

city System and End User

Driver	Indicator	MVA Demand (approx by 2030)	
Housing	44,000 housing units per year	~ 792 - 1,452 MVA	
Electrification of homes	Retrofitting 280,000 units	~ 280 - 840 MVA	
Economy & Industrial Heat	Last 12 months	~ 100 MVA per year	
Electrification of Public Transport	Bus Depots, DART+, Metrolink	~ 270 MVA	
AFIR (Alternative Fuel Infrastructure Regulation)	Public Re-charging Infrastructure - 945,000 EVs	~ 1,000 MVA	
	Ports & Airports	Under Evaluation	
 High Voltage Distr Dublin and 38 kV Interface stations 	between transmission and		
distribution system	n		

NETWORKS

Grid Construction

Killonan 220kV GIS

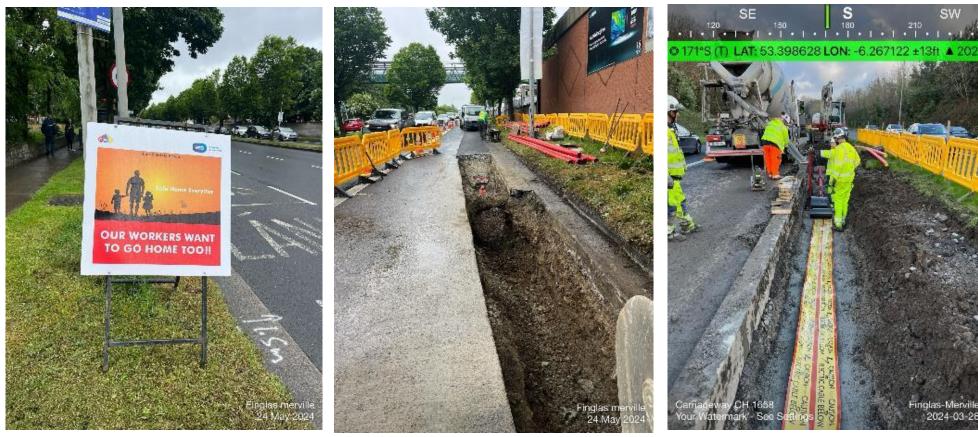
Woodford 38kV Uprate

Laois-Kilkenny OHL Reinforcement

NETWORKS

Finglas-Dardistown 110kV Cable

1950s



NETWORKS

Modern Installation

Signage on Approach

TM in place, road opened up

Install Underway

NETWORKS

Temporary Reinstatement

Collaboration

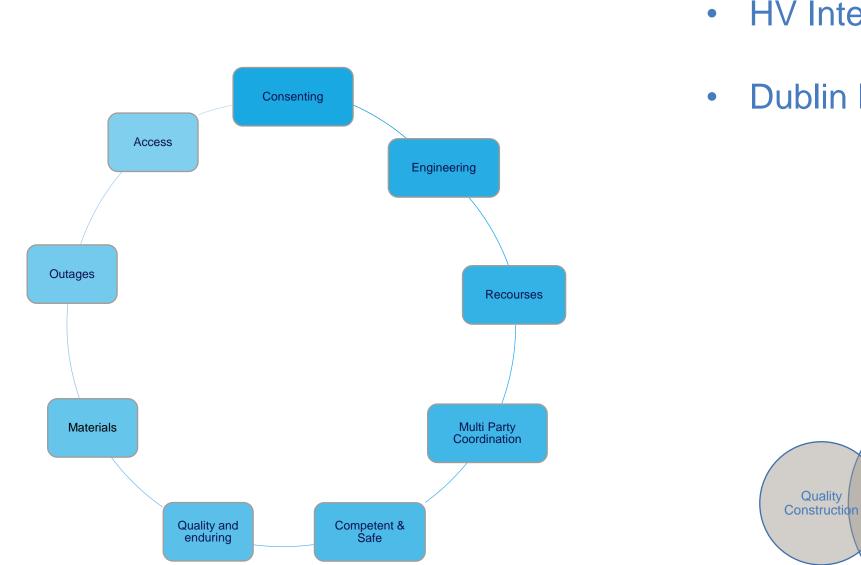
Templeogue Village Upgrade (during and after)

NETWORKS

Dodder Greenway Phase 4 (during and after)

Sub Station

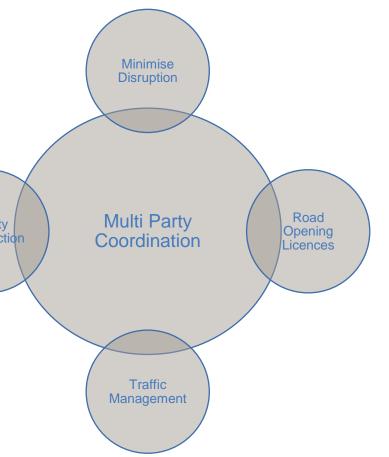
NETWORKS



NETWORKS

Substations

Project Enablers - Complexities



NETWORKS

HV Interphase Forum

Dublin Infrastructure Forum

NETWORKS

Questions: Session 5 Panel

Saccion 5: Protaction 8 Panawal

Chair: Stephen Smyth, Senior Manager, Pavement Asset Manager	ment Programm
Sustainable Pavement Design and Construction: A case study	Dimitris Michai
Update on the new Road Safety Audit standard	Martin Deegan
An introduction to Ireland's Supply Chain Sustainability School	Pamela Sherid Supply Chain S
Speed Limit Review (2023) and implementation	John McCarthy Department of
Strategic Asset Management Plan (SAMP) for National Roads.	Dr Kieran Feig O'Dea, TII
Collaboration between ESB and Road Authorities	Cormac Collins Networks

nes, TII

ailidis, CEng, Kilsaran

n, CEng, TRAFFICO

dan, Operations Manager, Sustainability School

ny, Senior Advisor, Roads, f Transport

ghan, PMS Ltd and Gerard

ns, Delivery Manager, ESB

End of Session 5 Tea & Coffee Break

Session 6 commences at 11.10am

